A381126 Primes that are the concatenation of prime(p) and p where p is a prime.
53, 6719, 15737, 587107, 1297211, 1823281, 1913293, 3067439, 3593503, 3943547, 4397599, 5503727, 5651743, 6353827, 6361829, 6823877, 7109911, 7283929, 7523953, 85131061, 85271063, 87611093, 88071097, 104331277, 125031493, 128411531, 130031549, 133311583, 141071663
Offset: 1
Examples
1297211 is a term since it is prime and is the concatenation of prime(p) = 1297 and p = 211.
Links
- Wikipedia, Super-prime
Programs
-
Maple
f:= p-> (h-> `if`(andmap(isprime, [p, h]), h, [][]))(parse(cat(ithprime(p), p))): map(f, [$1..2000])[]; # Alois P. Heinz, Feb 15 2025
-
PARI
a381126(limit) = {forprime (p=2, limit, my(pd=digits(p), ppd=digits(prime(p)), pc=fromdigits(concat(ppd,pd))); if(isprime(pc), print1(pc,", ")))}; a381126(2000) \\ Hugo Pfoertner, Feb 14 2025
-
Python
from sympy import isprime, primerange, prime def a(limit: int) -> list[int]: result: list[int] = [] for p in primerange(2, limit): pth_prime = prime(p) rc_val = int(f"{pth_prime}{p}") if isprime(rc_val): result.append(rc_val) return result print(a(1700))