cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A381161 a(n) = (10*n)!/((n!)^3*(2*n)!*(5*n)!).

Original entry on oeis.org

1, 15120, 3491888400, 1304290155168000, 601680868708529610000, 312696069714024464473125120, 175460887238127057573116837126400, 103865765423748548466734695459219968000, 63958974275578307119821712720619705931210000, 40596987692554701292235753375257230410967703200000
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 2.

Crossrefs

Programs

  • Mathematica
    a[n_]:=(10n)!/((n!)^3*(2n)!*(5n)!); Array[a,10,0]

Formula

G.f.: hypergeom([1/10, 3/10, 7/10, 9/10], [1, 1, 1], 2^8*5^5*x).
a(n) ~ 9*2^(3+8*n)*5^(1+5*n)/((1 + 24*n)*(1 + 60*n)*Pi^2).

A381162 a(n) = (8*n)!/((n!)^4*(4*n)!).

Original entry on oeis.org

1, 1680, 32432400, 999456057600, 37905932634570000, 1617318175088527591680, 74451445170005824874553600, 3614146643656788883257309696000, 182458061523203642337177421198794000, 9493111901274733909567003010522405280000, 505860213332178847817809654781948251947782400
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 7.

Crossrefs

Programs

  • Mathematica
    a[n_]:=(8n)!/((n!)^4*(4n)!); Array[a,11,0]

Formula

G.f.: hypergeom([1/8, 3/8, 5/8, 7/8], [1, 1, 1], 2^16*x).
a(n) ~ 2^(16*n - 3/2) / (Pi^2*n^2). - Vaclav Kotesovec, May 29 2025

A381163 a(n) = Sum_{k=0..n} binomial(n,k)*(4*k)!*(2*k)!/(k!)^6.

Original entry on oeis.org

1, 49, 15217, 7437505, 4444068913, 2978797867489, 2151085262277121, 1636678166183569873, 1294384621280668799665, 1054623536679756097536097, 879831837105310233485202337, 748258333337818719124808979313, 646586399881218539235007860940609, 566284969531710881501724274920081265
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 76.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n,k](4k)!(2k)!/k!^6,{k,0,n}]; Array[a,14,0]

Formula

G.f.: hypergeom([1/2, 1/2, 1/4, 3/4], [1, 1, 1], 2^10*x/(1-x))/(1-x).
a(n) = hypergeom([1/4, 1/2, 1/2, 3/4, -n], [1, 1, 1, 1], -2^10).
a(n) == 1 (mod 48).
a(n) ~ 5^(2*n+4) * 41^(n+2) / (2^(41/2) * Pi^2 * n^2). - Vaclav Kotesovec, May 29 2025

A381164 a(n) = Sum_{k=0..n} binomial(n,k)*(5*k)!/(k!)^5.

Original entry on oeis.org

1, 121, 113641, 168508561, 306213587881, 624890127114721, 1374618918516663841, 3187068298971939367561, 7682172545187676630759081, 19079663136489248380982551201, 48525227073661262262248690661841, 125818607409307965748858681991235961, 331488456546076036761442657285875590881
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 79.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n, k](5k)!/k!^5, {k, 0, n}]; Array[a, 13, 0]

Formula

G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1, 1, 1], 5^5*x/(1-x))/(1-x).
a(n) = hypergeom([1/5, 2/5, 3/5, 4/5, -n], [1, 1, 1, 1], -5^5).
a(n) == 1 (mod 120).
a(n) ~ 2^n * 3^(n+2) * 521^(n+2) / (5^(19/2) * Pi^2 * n^2). - Vaclav Kotesovec, May 29 2025
Showing 1-4 of 4 results.