A381212 a(n) is the smallest element of the set of bases and exponents (including exponents = 1) in the prime factorization of n.
1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2
Examples
a(36) = 2 because 36 = 2^2*3^2, the set of these bases and exponents is {2, 3} and its smallest element is 2. a(31500) = 1 because 31500 = 2^2*3^2*5^3*7^1, the set of these bases and exponents is {1, 2, 3, 5, 7} and its smallest element is 1.
Links
- Paolo Xausa, Table of n, a(n) for n = 2..10000
Crossrefs
Programs
-
Maple
A381212 := proc(n) local a,pe; a := n ; for pe in ifactors(n)[2] do a := min(a,op(1,pe),op(2,pe)) ; end do: a ; end proc: seq(A381212(n),n=2..100) ; # R. J. Mathar, Mar 05 2025
-
Mathematica
A381212[n_] := Min[Flatten[FactorInteger[n]]]; Array[A381212, 100, 2]
-
PARI
a(n) = my(f=factor(n)); vecmin(setunion(Set(f[,1]), Set(f[,2]))); \\ Michel Marcus, Feb 20 2025
Comments