A381266 a(n) = least positive integer m such that when m*(m+1) is written in base n, it contains every single digit exactly once, or 0 if no such number exists.
1, 0, 12, 34, 134, 0, 1477, 6891, 38627, 0, 891230, 4874690, 28507439, 0, 1078575795, 7002987575, 46916000817, 0, 2295911609450, 16720559375850, 124852897365573, 0, 7468470450367652, 59705969514613035, 487357094495846175, 0, 34452261762372201726, 297930994005481958694
Offset: 2
Examples
1477 is 2705 in octal. 2705 * 2706 = 10247536 (base 8) 38627 * 38628 = 1492083756 (base 10) see a381266.txt for more
Links
- Daniel Mondot, details for each term, in respective base.
Crossrefs
Cf. A381248.
Programs
-
Python
from itertools import count from math import isqrt from sympy.ntheory import digits def A381266(n): k, l, d = (n*(n-1)>>1)%(n-1), n**n-(n**n-n)//(n-1)**2, tuple(range(n)) clist = [i for i in range(n-1) if i*(i+1)%(n-1)==k] if len(clist) == 0: return 0 s = (n**n-n)//(n-1)**2+n**(n-2)*(n-1)-1 s = isqrt((s<<2)+1)-1>>1 s += n-1-s%(n-1) if s%(n-1) <= max(clist): s -= n-1 for a in count(s,n-1): if a*(a+1)>l: break for c in clist: m = a+c if m*(m+1)>l: break if tuple(sorted(digits(m*(m+1),n)[1:]))==d: return m return 0 # Chai Wah Wu, Mar 17 2025
Formula
a(n) = 0 if n == 3 (mod 4). - Chai Wah Wu, Mar 13 2025
Extensions
a(19)-a(29) from Chai Wah Wu, Mar 12 2025
Comments