A382050
a(n) = least positive integer m such that when m*(m+1) is written in base n, it is zeroless and contains every single nonzero digit exactly once, or 0 if no such number exists.
Original entry on oeis.org
0, 0, 5, 0, 79, 0, 650, 2716, 17846, 0, 277166, 1472993, 8233003, 0, 286485314, 1797613432, 11675780880, 0, 538954048563, 3821844010905, 27824692448867, 0, 1587841473665581, 12417635018180828, 99246128296767625, 0, 6742930364132819544, 57228575814672196977, 494789896551823383745, 0, 38997607084561562847324
Offset: 2
a(9) = 2716. 2716*2717 = 7379372 which is 14786532 in base 9.
-
from itertools import count
from math import isqrt
from sympy.ntheory import digits
def A382050(n):
k, l, d = (n*(n-1)>>1)%(n-1), n**(n-1)-(n**(n-1)-1)//(n-1)**2, tuple(range(1,n))
clist = [i for i in range(n-1) if i*(i+1)%(n-1)==k]
if len(clist) == 0:
return 0
s = (n**n - n**2 + n - 1)//((n - 1)**2)
s = isqrt((s<<2)+1)-1>>1
s += n-1-s%(n-1)
if s%(n-1) <= max(clist):
s -= n-1
for a in count(s,n-1):
if a*(a+1)>l:
break
for c in clist:
m = a+c
if m*(m+1)>l:
break
if tuple(sorted(digits(m*(m+1),n)[1:])) == d:
return m
return 0 # Chai Wah Wu, Mar 17 2025
A382054
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digit n-1 and contains every single digit from 0 to n-2 exactly once, or 0 if no such number exists.
Original entry on oeis.org
0, 0, 14, 54, 0, 616, 2251, 12069, 0, 251085, 1348305, 7619403, 0, 269717049, 1698727527, 11061795398, 0, 513383208454, 3648738866370, 26618719297968, 0, 1524495582671125, 11941193897016731, 95578593301936475, 0, 6510865478836888683, 55324396705324796861, 478855818873249715068, 0, 37817609915967014967822
Offset: 3
a(9) = 2251 since 2251*2252 = 5069252 which is 10475632 in base 9.
-
from itertools import count
from math import isqrt
from sympy.ntheory import digits
def A382054(n):
k, l, d= (n*(n-1)>>1)%(n-1), (n - n**n + (n - 1)**2*(n**n + n**(n - 1)*(1 - n)))//(n - 1)**2, tuple(range(n-1))
clist = [i for i in range(n-1) if i*(i+1)%(n-1)==k]
if len(clist) == 0:
return 0
s = (n**(n - 1) + (n - 1)**2*(n**(n - 3)*(n - 1) - 1) - 1)//(n - 1)**2
s = isqrt((s<<2)+1)-1>>1
s += n-1-s%(n-1)
if s%(n-1) <= max(clist):
s -= n-1
for a in count(s,n-1):
if a*(a+1)>l:
break
for c in clist:
m = a+c
if m*(m+1)>l:
break
if tuple(sorted(digits(m*(m+1),n)[1:]))==d:
return m
return 0 # Chai Wah Wu, Mar 17 2025
A382055
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digits 0 or n-1 and contains every single digit from 1 to n-2 exactly once, or 0 if no such number exists.
Original entry on oeis.org
0, 2, 6, 19, 0, 420, 924, 3672, 0, 78880, 431493, 2173950, 0, 71583429, 436726936, 2750336517, 0, 120521201887, 833996387274, 5932255141224, 0, 324116744376715, 2483526997445916, 19463766853506024, 0, 1274294107710603710, 10627079743009611713, 90335862784009245081, 0
Offset: 3
a(9) = 924. 924*925 = 854700 which is 1542376 in base 9.
-
from itertools import count
from math import isqrt
from sympy.ntheory import digits
def A382055(n):
k, l, d= (n*(n-1)>>1)%(n-1), (-n**(n - 1) + (n - 1)**2*(n**(n - 2)*(1 - n) + n**(n - 1)) + 1)//(n - 1)**2, tuple(range(1,n-1))
clist = [i for i in range(n-1) if i*(i+1)%(n-1)==k]
if len(clist) == 0:
return 0
s = (-n**2 + n + n**n - (n - 1)**3 - 1)//(n*(n - 1)**2)
s = isqrt((s<<2)+1)-1>>1
s += n-1-s%(n-1)
if s%(n-1) <= max(clist):
s -= n-1
for a in count(s,n-1):
if a*(a+1)>l:
break
for c in clist:
m = a+c
if m*(m+1)>l:
break
if tuple(sorted(digits(m*(m+1),n)[1:]))==d:
return m
return 0 # Chai Wah Wu, Mar 17 2025
Showing 1-3 of 3 results.
Comments