A351891
Expansion of e.g.f. exp( sinh(sqrt(2)*x) / sqrt(2) ).
Original entry on oeis.org
1, 1, 1, 3, 9, 25, 105, 443, 1969, 10609, 57265, 338547, 2190969, 14498185, 104277849, 784965803, 6150938593, 51229928929, 440694547681, 3967606065891, 37247506348905, 361022009762809, 3645855348771273, 38001754007842715, 409302848055407761, 4558828622414199121
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] 2^k a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
A351892
Expansion of e.g.f. exp( sinh(sqrt(3)*x) / sqrt(3) ).
Original entry on oeis.org
1, 1, 1, 4, 13, 40, 205, 952, 4921, 31168, 189145, 1318528, 9843781, 74869888, 632536933, 5475991552, 49996774897, 485393809408, 4829958877105, 50858117779456, 554544498995965, 6259096187060224, 73822470722135293, 894846287081242624, 11261265009125680681, 146272258394568687616
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sinh[Sqrt[3] x]/Sqrt[3]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] 3^k a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
A381343
Expansion of e.g.f. exp( sin(sqrt(2)*x) / sqrt(2) ).
Original entry on oeis.org
1, 1, 1, -1, -7, -15, 25, 287, 721, -2847, -30255, -61697, 682761, 5861713, 3105193, -258188513, -1681060063, 4623681473, 135471132705, 564325398271, -6357495670375, -89817656595791, -84337394884167, 7820620314702879, 67277670159083761, -322108989883888479
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, (-2)^((n-k)/2)*a136630(n, k));
Showing 1-3 of 3 results.