A381394 Decimal expansion of the multiple zeta value zetamult(8,2).
0, 0, 4, 1, 2, 2, 4, 6, 9, 6, 7, 8, 3, 9, 9, 8, 3, 2, 2, 2, 4, 0, 4, 6, 9, 5, 6, 8, 3, 8, 6, 9, 4, 2, 0, 8, 8, 5, 5, 8, 1, 2, 6, 2, 7, 3, 5, 8, 4, 6, 8, 5, 6, 9, 2, 8, 5, 2, 4, 5, 5, 1, 7, 9, 2, 8, 7, 1, 7, 1, 1, 1, 2, 7, 7, 4, 0, 6, 3, 8, 8, 3, 3, 1, 2, 7, 5, 9, 4, 5, 3, 4, 5, 2, 4, 3, 4, 1, 7, 3, 8, 8, 1, 7, 4
Offset: 0
Examples
0.004122469678399832224046956838694208855812627358468569285245...
Links
- Richard E. Crandall and Joe P. Buhler, On the evaluation of Euler Sums, Exp. Math. 3 (4) (1994), 275-285, Table 1.
- Debra MaƮtre, Mathematica Package HPL.
- Eric Weisstein's MathWorld, Multivariate Zeta Function
Crossrefs
Programs
-
Mathematica
RealDigits[N[MZV[{8, 2}], 120], 10, 105, -1][[1]] (* Amiram Eldar, Feb 25 2025 using the HPL Package *)
-
PARI
zetamult([8, 2]) \\ Amiram Eldar, Feb 25 2025
Formula
zeta(r,s) = Sum_{1 <= m < n} 1/(m^s n^r).
Extensions
More terms from Amiram Eldar, Feb 25 2025
Name corrected by Peter Bala, Aug 15 2025