cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381426 A(n,k) is the sum over all ordered partitions of [n] of k^j for an ordered partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 13, 8, 1, 1, 5, 36, 75, 16, 1, 1, 6, 79, 696, 541, 32, 1, 1, 7, 148, 3851, 27808, 4683, 64, 1, 1, 8, 249, 14808, 567733, 2257888, 47293, 128, 1, 1, 9, 388, 44643, 5942608, 251790113, 369572160, 545835, 256, 1, 1, 10, 571, 113480, 40065301, 9546508128, 335313799327, 121459776768, 7087261, 512
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,       1,         1,          1,            1,             1, ...
   1,    1,       1,         1,          1,            1,             1, ...
   2,    3,       4,         5,          6,            7,             8, ...
   4,   13,      36,        79,        148,          249,           388, ...
   8,   75,     696,      3851,      14808,        44643,        113480, ...
  16,  541,   27808,    567733,    5942608,     40065301,     199246816, ...
  32, 4683, 2257888, 251790113, 9546508128, 179833594207, 2099255895008, ...
		

Crossrefs

Main diagonal gives A381427.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    A:= (n, k)-> b(n, 0$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[o_, u_, t_, k_] := b[o, u, t, k] = If[u + o == 0, 1, If[t == 1, b[u + o, 0, 0, k], 0] + Sum[If[k == u + j - 1 == 0, 1, k^(u + j - 1)]*b[o - j, u + j - 1, 1, k], {j, 1, o}]];
    A[n_, k_] := b[n, 0, 0, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..binomial(n,2)} k^j * A381299(n,j).