A381427 Sum over all ordered partitions of [n] of n^j for an ordered partition with j inversions.
1, 1, 4, 79, 14808, 40065301, 2099255895008, 2651651342949844915, 96254339565438079064819328, 116387990444553949414146511586296381, 5327195120249449992420082364255283659438679552, 10333056290045508772052838892223597279253890797441054043823
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..36
- Wikipedia, Inversion
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1, b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o)) end: a:= n-> b(n, 0$2, n): seq(a(n), n=0..11);