cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381427 Sum over all ordered partitions of [n] of n^j for an ordered partition with j inversions.

Original entry on oeis.org

1, 1, 4, 79, 14808, 40065301, 2099255895008, 2651651342949844915, 96254339565438079064819328, 116387990444553949414146511586296381, 5327195120249449992420082364255283659438679552, 10333056290045508772052838892223597279253890797441054043823
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Crossrefs

Main diagonal of A381426.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    a:= n-> b(n, 0$2, n):
    seq(a(n), n=0..11);

Formula

a(n) = Sum_{j=0..binomial(n,2)} n^j * A381299(n,j).
a(n) = A381426(n,n).
a(n) mod n = A062173(n) for n>=1.
a(n) mod 2 = A135528(n+1).