A381455 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into a multiset of constant multisets.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The prime indices of 36 are {1,1,2,2}, with the following 4 partitions into a multiset of constant multisets: {{1,1},{2,2}} {{1},{1},{2,2}} {{2},{2},{1,1}} {{1},{1},{2},{2}} with block-sums: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, which are all different, so a(36) = 4. The prime indices of 144 are {1,1,1,1,2,2}, with the following 10 partitions into a multiset of constant multisets: {{2,2},{1,1,1,1}} {{1},{2,2},{1,1,1}} {{2},{2},{1,1,1,1}} {{1,1},{1,1},{2,2}} {{1},{1},{1,1},{2,2}} {{1},{2},{2},{1,1,1}} {{2},{2},{1,1},{1,1}} {{1},{1},{1},{1},{2,2}} {{1},{1},{2},{2},{1,1}} {{1},{1},{1},{1},{2},{2}} with block-sums: {4,4}, {1,3,4}, {2,2,4}, {2,2,4}, {1,1,2,4}, {1,2,2,3}, {2,2,2,2}, {1,1,1,1,4}, {1,1,2,2,2}, {1,1,1,1,2,2}, of which 9 are distinct, so a(144) = 9. The a(n) partitions for n = 4, 8, 16, 32, 36, 64, 72, 128: (2) (3) (4) (5) (42) (6) (43) (7) (11) (21) (22) (32) (222) (33) (322) (43) (111) (31) (41) (411) (42) (421) (52) (211) (221) (2211) (51) (2221) (61) (1111) (311) (222) (4111) (322) (2111) (321) (22111) (331) (11111) (411) (421) (2211) (511) (3111) (2221) (21111) (3211) (111111) (4111) (22111) (31111) (211111) (1111111)
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Crossrefs
Before taking sums we had A000688.
Positions of 1 are A005117.
There is a chain from the prime indices of n to a singleton iff n belongs to A300273.
The lower version is A381453.
Other multiset partitions of prime indices:
A000040 lists the primes.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]]; Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
Formula
a(s) = 1 for any squarefree number s.
a(p^k) = A000041(k) for any prime p.
Comments