A381475 Array read by antidiagonals: T(m,n) is the connected domination number of the grid graph P_m X P_n.
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 4, 3, 4, 3, 4, 5, 4, 4, 5, 4, 5, 6, 5, 7, 5, 6, 5, 6, 7, 6, 9, 9, 6, 7, 6, 7, 8, 7, 10, 11, 10, 7, 8, 7, 8, 9, 8, 12, 12, 12, 12, 8, 9, 8, 9, 10, 9, 14, 15, 14, 15, 14, 9, 10, 9, 10, 11, 10, 15, 17, 16, 16, 17, 15, 10, 11, 10
Offset: 1
Examples
Table begins: ========================================================= m\n | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... ----+---------------------------------------------------- 1 | 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 2 | 1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 4 | 2 4 4 7 9 10 12 14 15 17 19 20 22 24 25 27 ... 5 | 3 5 5 9 11 12 15 17 18 21 23 24 27 29 30 33 ... 6 | 4 6 6 10 12 14 16 18 20 22 24 26 28 30 32 34 ... 7 | 5 7 7 12 15 16 20 23 24 28 31 32 36 39 40 44 ... 8 | 6 8 8 14 17 18 23 26 27 32 35 36 41 44 45 50 ... 9 | 7 9 9 15 18 20 24 27 30 33 36 39 42 45 48 51 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..435 (first 29 antidiagonals)
- Eric Weisstein's World of Mathematics, Connected Domination Number.
- Eric Weisstein's World of Mathematics, Grid Graph.
Formula
T(m,n) = T(n,m).