A381498 a(n) = sum of numbers k <= n that have the same squarefree kernel as n.
1, 2, 3, 6, 5, 6, 7, 14, 12, 10, 11, 18, 13, 14, 15, 30, 17, 36, 19, 30, 21, 22, 23, 60, 30, 26, 39, 42, 29, 30, 31, 62, 33, 34, 35, 96, 37, 38, 39, 70, 41, 42, 43, 66, 60, 46, 47, 144, 56, 120, 51, 78, 53, 198, 55, 98, 57, 58, 59, 90, 61, 62, 84, 126, 65, 66
Offset: 1
Keywords
Examples
n a(n) Factor(a(n)) Row n of A369609 ---------------------------------------- 4 6 2 * 3 {2, 4} 8 14 2 * 7 {2, 4, 8} 9 12 2^2 * 3 {3, 9} 12 18 2 * 3^2 {6, 12} 16 30 2 * 3 * 5 {2, 4, 8, 16} 18 36 2^2 * 3^2 {6, 12, 18} 20 30 2 * 3 * 5 {10, 20} 24 60 2^2 * 3 * 5 {6, 12, 18, 24} 25 30 2 * 3 * 5 {5, 25} 27 39 3 * 13 {3, 9, 27} 28 42 2 * 3 * 7 {14, 28} 32 62 2 * 31 {2, 4, 8, 16, 32} 36 96 2^5 * 3 {6, 12, 18, 24, 36}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^16, showing a(n) for prime n in red, squarefree composite n in green, proper prime powers n in gold, powerful n that are not prime powers in magenta, and other numbers in blue.
Programs
-
Mathematica
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], rad[#] == r &], {n, 120}]
-
PARI
rad(n) = factorback(factorint(n)[, 1]); a(n) = my(r=rad(n)); sum(k=1, n, if(rad(k)==r, k)); \\ Michel Marcus, Mar 03 2025
Formula
a(n) = sum of row n of A369609.
For squarefree k, a(k) = k.
For prime power p^m, a(p^m) = Sum_{i=1..m} p^i.
Comments