cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381535 a(n) is the least nonnegative number that can be represented as the sum of two (not necessarily distinct) generalized pentagonal numbers in exactly n ways.

Original entry on oeis.org

11, 0, 2, 27, 92, 352, 1002, 16927, 2302, 7827, 25052, 220052, 13352, 1487552, 101752, 195677, 85177, 137532552, 173577
Offset: 0

Views

Author

Robert Israel, Feb 26 2025

Keywords

Comments

a(n) is the least k >= 0 such that A093518(k) = n.
a(17) > 5.4 * 10^7 if it exists.
From Pontus von Brömssen, Feb 28 2025: (Start)
a(19) > 3*10^9 if it exists.
After a(19), the following are all terms below 3*10^9:
n | a(n)
---+-----------
20 | 333802
21 | 4891927
22 | 391438802
23 | 2543802
24 | 494027
25 | 55039427
27 | 3764827
28 | 8345052
30 | 4339427
32 | 2737177
35 | 1375985677
36 | 6422352
38 | 429902552
40 | 12350677
41 | 85573502
42 | 108485677
45 | 94120677
48 | 29014077
50 | 733363177
54 | 120983227
56 | 308766927
60 | 160558802
63 | 2353016927
64 | 101275552
68 | 2139337552
72 | 344336877
80 | 725351927
96 | 1073520852
(End)

Examples

			a(3) = 27 because 27 = 1 + 26 = 5 + 22 = 12 + 15 has 3 representations as the sum of two generalized pentagonal numbers, and no smaller number works.
		

Crossrefs

Programs

  • Maple
    GP:= [0,seq(op([m*(3*m-1)/2, m*(3*m+1)/2]),m=1..2000)]:
    N:= GP[-1]:
    V:= Array(0..N, datatype=integer[4]):
    for i from 1 to nops(GP) do
    for j from 1 to i do
       r:= GP[i]+GP[j];
       if r > N then break fi;
       V[r]:= V[r]+1
    od od:
    W:= Array(0..16): count:= 0:
    for i from 1 to N while count < 17 do
      v:= V[i]; if v <= 16 and W[v] = 0 then W[v]:= i; count:= count + 1 fi
    od:
    W[1]:= 0:
    convert(W,list);

Formula

A093518(a(n)) = n.

Extensions

a(17)-a(18) from Pontus von Brömssen, Feb 28 2025