A381535 a(n) is the least nonnegative number that can be represented as the sum of two (not necessarily distinct) generalized pentagonal numbers in exactly n ways.
11, 0, 2, 27, 92, 352, 1002, 16927, 2302, 7827, 25052, 220052, 13352, 1487552, 101752, 195677, 85177, 137532552, 173577
Offset: 0
Examples
a(3) = 27 because 27 = 1 + 26 = 5 + 22 = 12 + 15 has 3 representations as the sum of two generalized pentagonal numbers, and no smaller number works.
Programs
-
Maple
GP:= [0,seq(op([m*(3*m-1)/2, m*(3*m+1)/2]),m=1..2000)]: N:= GP[-1]: V:= Array(0..N, datatype=integer[4]): for i from 1 to nops(GP) do for j from 1 to i do r:= GP[i]+GP[j]; if r > N then break fi; V[r]:= V[r]+1 od od: W:= Array(0..16): count:= 0: for i from 1 to N while count < 17 do v:= V[i]; if v <= 16 and W[v] = 0 then W[v]:= i; count:= count + 1 fi od: W[1]:= 0: convert(W,list);
Formula
A093518(a(n)) = n.
Extensions
a(17)-a(18) from Pontus von Brömssen, Feb 28 2025
Comments