cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A381569 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381570.

Original entry on oeis.org

1, 1, 0, 1, 3, 0, 1, 6, 12, 0, 1, 9, 33, 82, 0, 1, 12, 63, 236, 732, 0, 1, 15, 102, 489, 2100, 7944, 0, 1, 18, 150, 868, 4428, 22248, 99156, 0, 1, 21, 207, 1400, 8121, 46422, 270268, 1381464, 0, 1, 24, 273, 2112, 13665, 85272, 552540, 3668568, 21065853, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2025

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,     1,      1, ...
  0,    3,     6,     9,    12,     15, ...
  0,   12,    33,    63,   102,    150, ...
  0,   82,   236,   489,   868,   1400, ...
  0,  732,  2100,  4428,  8121,  13665, ...
  0, 7944, 22248, 46422, 85272, 145143, ...
		

Crossrefs

Columns k=0..1 give A000007, A381570.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-3*j+3*k, j)/(n-j+k)*a(n-j, j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(3*n-3*j+3*k,j)/(n-j+k) * A(n-j,j).

A212029 G.f. A(x) satisfies A(x) = 1 + x*A(x*A(x)^3)^3.

Original entry on oeis.org

1, 1, 3, 21, 190, 2112, 26922, 382110, 5920788, 98862273, 1762572957, 33325846461, 664774457583, 13932829786025, 305788481726799, 7008171327166869, 167321925537782445, 4153009604547937170, 106963758805117459392, 2854029374011293902121, 78773444214057182702790
Offset: 0

Views

Author

Paul D. Hanna, Apr 27 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 190*x^4 + 2112*x^5 + 26922*x^6 +...
Related expansions:
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 732*x^4 + 7944*x^5 + 99156*x^6 +..
A(x*A(x)^3) = 1 + x + 6*x^2 + 51*x^3 + 560*x^4 + 7155*x^5 + 102495*x^6 +...
A(x*A(x)^3)^3 = 1 + 3*x + 21*x^2 + 190*x^3 + 2112*x^4 + 26922*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^3, x, x*A^3)); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-3*j+k, j)/(3*n-3*j+k)*a(n-j, 3*j))); \\ Seiichi Manyama, Mar 01 2025

Formula

From Seiichi Manyama, Mar 01 2025: (Start)
Let a(n,k) = [x^n] A(x)^k.
a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(3*n-3*j+k,j)/(3*n-3*j+k) * a(n-j,3*j). (End)

A381574 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x*A(x)))^3.

Original entry on oeis.org

1, 3, 15, 118, 1206, 14712, 204385, 3143826, 52580328, 944416084, 18056415144, 365065244238, 7765839784508, 173123253590079, 4031536347783786, 97807655876704029, 2466489368705170539, 64527021089110890192, 1748298996924574135699, 48982266056400514509660
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2025

Keywords

Crossrefs

Column k=1 of A381573.

Programs

  • PARI
    a(n, k=1) = if(k==0, 0^n, 3*k*sum(j=0, n, binomial(3*n-2*j+3*k, j)/(3*n-2*j+3*k)*a(n-j, j)));

Formula

See A381573.
G.f.: B(x)^3, where B(x) is the g.f. of A381615.

A381568 G.f. A(x) satisfies A(x) = (1 + x*A(x*A(x)))^2.

Original entry on oeis.org

1, 2, 5, 22, 126, 884, 7149, 64688, 641836, 6888740, 79203860, 968503090, 12525131474, 170555767116, 2436592516874, 36409825487380, 567612675812796, 9211031425896752, 155283809480528788, 2714788300934206360, 49140787009610861896, 919625415852055598804, 17768937720619971300781
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2025

Keywords

Crossrefs

Column k=1 of A381567.

Programs

  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n-2*j+2*k, j)/(n-j+k)*a(n-j, j)));

Formula

See A381567.
G.f.: B(x)^2, where B(x) is the g.f. of A143508.
Showing 1-4 of 4 results.