A381682 Triangle read by rows: T(n,k) = number of collections of up to k+1 disjoint subsets of [n] covering [n], with [0]={}, 0<=k<=n.
1, 1, 2, 1, 3, 4, 1, 5, 9, 10, 1, 9, 22, 29, 30, 1, 17, 57, 92, 103, 104, 1, 33, 154, 309, 389, 405, 406, 1, 65, 429, 1080, 1570, 1731, 1753, 1754, 1, 129, 1222, 3889, 6640, 7956, 8250, 8279, 8280, 1, 257, 3537, 14332, 29053, 38650, 41758, 42256, 42293, 42294
Offset: 0
Examples
Triangle begins: 1 1 2 1 3 4 1 5 9 10 1 9 22 29 30 1 17 57 92 103 104 1 33 154 309 389 405 406 1 65 429 1080 1570 1731 1753 1754 1 129 1222 3889 6640 7956 8250 8279 8280 1 257 3537 14332 29053 38650 41758 42256 42293 42294 ... T(3,2)=9 is the number of disjoint [3]-covering collections of up to 3 subsets: {{1,2,3}} {{1,2,3},{}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1},{2},{3}} {{1},{2,3},{}} {{2},{1,3},{}} {{3},{1,2},{}}.
Programs
-
Mathematica
Table[If[n==0, 1, 2*Sum[StirlingS2[n, j], {j, k}] + StirlingS2[n, k+1]], {n, 0, 9}, {k, 0, n}] // Flatten
Formula
T(n,k) = 2*Sum_{j=1..k} S2(n,j) + S2(n,k+1) for n>=1.
T(0,k) = 1.
Comments