cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381736 Integers k = p*q*r, where p < q < r are distinct primes and p*q > r.

Original entry on oeis.org

30, 70, 105, 154, 165, 182, 195, 231, 273, 286, 357, 374, 385, 399, 418, 429, 442, 455, 494, 561, 595, 598, 627, 646, 663, 665, 715, 741, 759, 782, 805, 874, 897, 935, 957, 969, 986, 1001, 1015, 1023, 1045, 1054, 1085, 1102, 1105, 1131, 1173, 1178, 1209
Offset: 1

Views

Author

Matthew Goers, Mar 05 2025

Keywords

Comments

These are squarefree 3-almost-primes, called sphenic numbers, that are greater than the square of the largest of its prime factors. As all sphenic numbers are, by definition, less than the cube of their largest prime factor, numbers in this sequence satisfy r^2 < k < r^3, where k = p*q*r, p < q < r.

Examples

			30 = 2*3*5 and 2*3 > 5, so 30 is in the sequence.
70 = 2*5*7 and 2*5 > 7, so 70 is in the sequence.
110 = 2*5*11 but 2*5 < 11, so 110 is not in the sequence.
		

Crossrefs

Intersection of A007304 (sphenic numbers) and A164596.
Cf. A382022.

Programs

  • Maple
    N:= 2000: # for terms < N
    P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    R:= NULL:
    for k from 1 to nops(P) do
      for i from 1 to k-2 while P[i]*P[i+1]*P[k] < N do
         jmin:= max(i+1,ListTools:-BinaryPlace(P,P[k]/P[i])+1);
         jmax:= min(k-1,ListTools:-BinaryPlace(P,N/(P[i]*P[k])));
         R:= R, seq(P[i]*P[j]*P[k],j=jmin .. jmax);
    od od:
    sort([R]); # Robert Israel, Mar 28 2025
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]*f[[2, 1]] > f[[3, 1]]]; Select[Range[1500], q] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    is_a381736(n) = my(F=factor(n)); omega(F)==3 && bigomega(F)==3 && F[1,1]*F[2,1]>F[3,1] \\ Hugo Pfoertner, Mar 08 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A381736(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(min(x//(p*q),p*q-1))-b for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025