A381737 Orders k of Hermite polynomials whose maximal coefficient in absolute value appears twice.
8, 13, 34, 43, 76, 89, 134, 151, 208, 229, 298, 323, 404, 433, 526, 559, 664, 701, 818, 859, 988, 1033, 1174, 1223, 1376, 1429, 1594, 1651, 1828, 1889, 2078, 2143, 2344, 2413, 2626, 2699, 2924, 3001, 3238, 3319, 3568, 3653, 3914, 4003, 4276, 4369, 4654, 4751, 5048
Offset: 1
Keywords
Examples
H_8(x) = 1680 - 13440 x^2 + 13440 x^4 - 3584 x^6 + 256 x^8, maximum coefficient in absolute value is 13440, which appears twice. Hence 8 is a term. H_6(x) = -120 + 720 x^2 - 480 x^4 + 64 x^6. Absolute maximum unique. Hence 6 is not a term.
Links
- Mike Sheppard, Table of n, a(n) for n = 1..70
Programs
-
Mathematica
Flatten@Position[Table[Count[#, Max@#] &@Abs@CoefficientList[HermiteH[n, x], x], {n, 1000}], 2]
-
PARI
isok(k) = my(vp=apply(x->abs(x), Vec(polhermite(k))), m=vecmax(vp)); #select(x->(x==m), vp) == 2; \\ Michel Marcus, Mar 09 2025
Formula
Conjecture 1: a(n) = 2*n*(n + 2) + (n + 1)*(-1)^(n+1).
Conjecture 2: a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
Conjecture 3: G.f.: (8*x + 5*x^2 + 5*x^3 - x^4 - x^5) / ((1 - x)^3 * (1 + x)^2).
Terms < 20000 consistent with conjectures. - Jinyuan Wang, Mar 09 2025.