cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381737 Orders k of Hermite polynomials whose maximal coefficient in absolute value appears twice.

Original entry on oeis.org

8, 13, 34, 43, 76, 89, 134, 151, 208, 229, 298, 323, 404, 433, 526, 559, 664, 701, 818, 859, 988, 1033, 1174, 1223, 1376, 1429, 1594, 1651, 1828, 1889, 2078, 2143, 2344, 2413, 2626, 2699, 2924, 3001, 3238, 3319, 3568, 3653, 3914, 4003, 4276, 4369, 4654, 4751, 5048
Offset: 1

Views

Author

Mike Sheppard, Mar 05 2025

Keywords

Examples

			H_8(x) = 1680 - 13440 x^2 + 13440 x^4 - 3584 x^6 + 256 x^8, maximum coefficient in absolute value is 13440, which appears twice. Hence 8 is a term.
H_6(x) = -120 + 720 x^2 - 480 x^4 + 64 x^6. Absolute maximum unique. Hence 6 is not a term.
		

Crossrefs

Programs

  • Mathematica
    Flatten@Position[Table[Count[#, Max@#] &@Abs@CoefficientList[HermiteH[n, x], x], {n, 1000}], 2]
  • PARI
    isok(k) = my(vp=apply(x->abs(x), Vec(polhermite(k))), m=vecmax(vp)); #select(x->(x==m), vp) == 2; \\ Michel Marcus, Mar 09 2025

Formula

Conjecture 1: a(n) = 2*n*(n + 2) + (n + 1)*(-1)^(n+1).
Conjecture 2: a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
Conjecture 3: G.f.: (8*x + 5*x^2 + 5*x^3 - x^4 - x^5) / ((1 - x)^3 * (1 + x)^2).
Terms < 20000 consistent with conjectures. - Jinyuan Wang, Mar 09 2025.