A381788 Greedy expansion of Pi-3 in a base with place values 1/(10^k-1), k >= 1, using digits {0,1,2,...,8,9,A=10}.
1, 3, 0, 1, 7, 8, 5, 0, 1, 4, 6, 6, 5, 9, 4, 7, 1, 5, 1, 9, 5, 6, 1, 3, 4, 8, 9, 3, 4, 2, 2, 7, 5, 2, 2, 9, 0, 3, 8, 6, 2, 8, 1, 1, 5, 8, 3, 5, 3, 1, 1, 9, 8, 2, 3, 5, 2, 0, 8, 9, 4, 1, 8, 2, 4, 8, 6, 3, 1, 2, 5, 9, 1, 2, 9, 1, 5, 5, 5, 0, 6, 9, 6, 8, 0, 7, 7, 9, 7, 4, 0, 9, 8, 2, 8, 5, 7, 4, 1, 9, 5, 5, 7, 5, 2, 8, 3, 1, 1, 0, 8, 8, 5
Offset: 1
Programs
-
Maple
BASEN:= proc(x, b, sgn, k) local i, j, v, premier, fin, lll, liste, w, baz; baz := evalf(b); v := abs(frac(evalf(x))); fin := trunc(evalf(Digits/log10(b))); lll := [seq(i^k*(baz^i + sgn), i = 1 .. fin)]; liste := []; for i to fin do w := trunc(v*lll[i]); v := v - w/lll[i]; liste := [op(liste), w] end do; RETURN(liste) end; BASEN(Pi-3,10,-1,0);
Formula
Sum_{k>=1} a(k)/(10^k - 1) = Pi - 3.
Extensions
Edited by N. J. A. Sloane, Mar 18 2025
Comments