A381808 Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.
1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0
Examples
The a(1) = 1 through a(5) = 12 multisets: {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {1,1,2,2} {1,1,2,2,4} {1,1,2,2,4,5} {1,1,2,3,3} {1,1,2,3,3,5} {1,1,1,2,2,3} {1,1,2,3,4,4} {1,2,2,3,3,4} {1,1,1,2,2,3,5} {1,1,1,2,2,4,4} {1,1,1,2,3,3,4} {1,1,2,2,2,3,4} {1,1,2,2,3,3,3} {1,1,1,1,2,2,3,4} {1,1,1,2,2,2,3,3}
Crossrefs
A265947 counts refinement-ordered pairs of integer partitions.
Programs
-
Mathematica
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]
Extensions
a(12)-a(16) from Christian Sievers, Jun 04 2025