A381851 a(n) is the least number k such that both k and k - s have n prime divisors, counted with multiplicity, where s is the sum of the decimal digits of k.
10, 20, 40, 80, 224, 448, 2176, 24640, 98816, 287744, 3771392, 5637632, 6508544, 323903488, 1126252544, 7698939904, 20511260672, 249460531200, 857557762048, 582799458304, 11797582053376, 24614476447744, 591901367468032, 1314105503776768, 5988418763882496
Offset: 2
Examples
a(4) = 40 because 40 has sum of digits 4, both 40 = 2^3 * 5 and 40 - 4 = 36 = 2^2 * 3^2 have 4 prime divisors, counted with multiplicity, and no number < 40 works.
Programs
-
Maple
f:= proc(n) uses priqueue; local pq, t,x,s,p,i; initialize(pq); insert([-2^n, 2$n], pq); do t:= extract(pq); x:= -t[1]; s:= convert(convert(x,base,10),`+`); if numtheory:-bigomega(x-s) = n then return x fi; p:= nextprime(t[-1]); for i from n+1 to 2 by -1 while t[i] = t[-1] do insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq) od; od; end proc: map(f, [$2..21]);
-
PARI
generate(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, my(s=sumdigits(m*q)); if(m*q > s && bigomega(m*q-s) == k, listput(list, m*q))), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n))); a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, May 24 2025
Extensions
a(22)-a(23) from Michael S. Branicky, May 07 2025
a(24)-a(26) from Daniel Suteu, May 24 2025
Comments