A382996 a(n) is the least number k such that both k and k + s have n prime divisors, counted with multiplicity, where s is the sum of the decimal digits of k.
11, 15, 18, 81, 243, 486, 2976, 25488, 128768, 396864, 911232, 8820864, 69940224, 118462464, 1171768320, 1756943946, 11753349120, 272313556992, 491737042890, 2374758457344, 9766784434176, 22675979501496, 269744252387328, 1546075329527736, 6138628058382336
Offset: 1
Examples
a(4) = 81 because 81 has sum of digits 9, both 81 = 3^4 and 81 + 9 = 90 = 2 * 3^2 * 5 have 4 prime divisors, counted with multiplicity, and no number smaller than 81 works.
Programs
-
Maple
f:= proc(n) uses priqueue; local pq, t,x,s,p,i; initialize(pq); insert([-2^n, 2$n], pq); do t:= extract(pq); x:= -t[1]; s:= convert(convert(x,base,10),`+`); if numtheory:-bigomega(x+s) = n then return x fi; p:= nextprime(t[-1]); for i from n+1 to 2 by -1 while t[i] = t[-1] do insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq) od; od; end proc: map(f, [$1..20]);
-
PARI
generate(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, if(bigomega(m*q+sumdigits(m*q)) == k, listput(list, m*q))), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n))); a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, May 24 2025
Extensions
a(21)-a(22) from Michael S. Branicky, May 08 2025
a(23)-a(25) from Daniel Suteu, May 24 2025
Comments