cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381862 Number of pairs of triangles that are pairwise edge-disjoint in the complete graph K_n.

Original entry on oeis.org

15, 100, 385, 1120, 2730, 5880, 11550, 21120, 36465, 60060, 95095, 145600, 216580, 314160, 445740, 620160, 847875, 1141140, 1514205, 1983520, 2567950, 3289000, 4171050, 5241600, 6531525, 8075340, 9911475, 12082560, 14635720, 17622880, 21101080, 25132800, 29786295
Offset: 5

Views

Author

Julian Allagan, Mar 08 2025

Keywords

Comments

In other words, the number of unordered pairs of triangles that share at most 1 vertex in the complete graph K_n.

Examples

			a(5) = 15 because there are 15 unordered pairs of triangles that share 1 vertex.
a(6) = 100 = 90 + 10 because there are 90 = 15*binomial(6,5) unordered pairs of triangles that share 1 vertex and 10 = 10*binomial(6,6) unordered pairs of triangles that do not share a vertex.
		

References

  • Julian Allagan, Edge-Disjoint Triangle Packings in Complete Graphs: Recurrence Relations and Closed Formulas. Submitted to Journal of Integer Sequences.

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(n-1)*(n-2)*(n-3)*(n-4)*(n+4)/72; Array[a,33,5] (* Stefano Spezia, Mar 09 2025 *)
  • Python
    def A381862(n): return n*(n*(n*(n*(n*(n-6)-5)+90)-176)+96)//72 # Chai Wah Wu, Mar 18 2025

Formula

a(n) = 10*binomial(n,6) + 3*n*binomial(n-1,4).
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n+4)/72.
G.f.: 5*x^5*(3 - x)/(1 - x)^7. - Stefano Spezia, Mar 09 2025