Julian Allagan has authored 10 sequences.
A384988
a(n) = Stirling2(n,2)^2 + Stirling2(n,3).
Original entry on oeis.org
0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1
3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press.
- Eric Weisstein's World of Mathematics, Complete Multipartite Graph.
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
[(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
-
Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]
A385432
Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete tripartite graph using exactly k interchangeable colors, 3 <= k <= 3*n.
Original entry on oeis.org
1, 1, 3, 3, 1, 1, 9, 30, 45, 30, 9, 1, 1, 21, 165, 598, 1032, 939, 471, 129, 18, 1, 1, 45, 750, 5655, 19653, 36465, 39250, 25560, 10278, 2545, 375, 30, 1, 1, 93, 3153, 46726, 295905, 978588, 1881306, 2232798, 1704405, 858530, 288768, 64743, 9495, 870, 45, 1, 1, 189, 12810, 364875, 3988530, 21976122, 69388462, 134794821, 1
Offset: 1
Triangle begins (n >= 1, k >= 3):
n = 1: [1]
n = 2: [1, 3, 3, 1]
n = 3: [1, 9, 30, 45, 30, 9, 1]
n = 4: [1, 21, 165, 598, 1032, 939, 471, 129, 18, 1]
n = 5: [1, 45, 750, 5655, 19653, 36465, 39250, 25560, 10278, 2545, 375, 30, 1]
n = 6: [1, 93, 3153, 46726, 295905, 978588, 1881306, 2232798, 1704405, 858530, 288768, 64743, 9495, 870, 45, 1]...
-
T(n, k) = sum(j1=1, k-2, sum(j2=1, k-j1-1, my(j3 = k - j1 - j2); if(j3 >= 1, stirling(n, j1, 2)*stirling(n, j2, 2)*stirling(n, j3, 2))));
for(n=1, 8, print(vector(3*n - 2, k, T(n, k + 2))))
A385437
Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete bipartite graph with a perfect matching removed using exactly k interchangeable colors, for n >= 1 and 2 <= k <= 2n.
Original entry on oeis.org
1, 2, 4, 1, 1, 10, 20, 9, 1, 1, 18, 92, 146, 80, 16, 1, 1, 35, 355, 1146, 1492, 850, 220, 25, 1, 1, 68, 1336, 7590, 17831, 19740, 11052, 3230, 490, 36, 1, 1, 133, 5026, 47278, 181251, 332039, 320763, 172788, 53417, 9520, 952, 49, 1, 1, 262, 19097, 287126, 1710016, 4809728, 7204912, 6180858, 3177106, 1003940, 196728, 23660, 1680, 64, 1
Offset: 1
Triangle begins (n >= 1, k >= 2):
n = 1: [1]
n = 2: [2, 4, 1]
n = 3: [1, 10, 20, 9, 1]
n = 4: [1, 18, 92, 146, 80, 16, 1]
n = 5: [1, 35, 355, 1146, 1492, 850, 220, 25, 1]
n = 6: [1, 68, 1336, 7590, 17831, 19740, 11052, 3230, 490, 36, 1]
n = 7: [1, 133, 5026, 47278, 181251, 332039, 320763, 172788, 53417, 9520, 952, 49, 1]...
For n=2, k=3: T(2,3) = 4. The graph K_{2,2} - M has vertices {a_1, a_2, b_1, b_2} with edges {a_1,b_2}, {a_2,b_1}, {a_2,b_2}, {a_1,b_1} (assuming the perfect matching M = {{a_1,b_1}, {a_2,b_2}} is removed). The 4 ways to partition into 3 independent sets are: {{a_1},{a_2},{b_1,b_2}}, {{a_1},{b_1},{a_2,b_2}}, {{a_2},{b_2},{a_1,b_1}}, {{b_1},{b_2},{a_1,a_2}}.
-
T(n, k) = sum(s=0, n, binomial(n, s)*sum(j=0, k - n + s, stirling(s, j, 2)*stirling(s, k - n + s - j, 2)));
for(n=1, 10, print(vector(2*n - 1, k, T(n, k + 1))))
A384981
Number of proper vertex colorings of the n-complete bipartite graph using exactly 5 interchangeable colors.
Original entry on oeis.org
0, 0, 6, 86, 770, 5710, 38626, 248766, 1558290, 9603470, 58604546, 355460446, 2147773810, 12945690030, 77907271266, 468366848126, 2813865797330, 16897768573390, 101444650414786, 608899287739806, 3654318951308850, 21929599650541550, 131592320786851106, 789612753560503486
Offset: 1
a(3) = 6 because K(3,3) can be partitioned into 5 nonempty independent sets in exactly 6 ways.
-
Table[2StirlingS2[n, 4] + 2StirlingS2[n, 3]StirlingS2[n, 2], {n, 1, 30}]
A384980
Number of proper vertex colorings of the n-complete bipartite graph using exactly 4 interchangeable colors.
Original entry on oeis.org
0, 1, 11, 61, 275, 1141, 4571, 18061, 71075, 279781, 1103531, 4363261, 17292275, 68670421, 273152891, 1087959661, 4337751875, 17308485061, 69105848651, 276038071261, 1102994217875, 4408498475701, 17623550326811, 70462853802061, 281757339138275, 1126747061234341, 4506141224763371
Offset: 1
a(3) = 11 because K(3,3) has vertices {a1,a2,a3,b1,b2,b3} and there are 11 ways to color properly 6 vertices using all 4 colors.
-
Table[2*StirlingS2[n, 3] + StirlingS2[n, 2]^2, {n, 1, 50}]
-
a(n) = 2*stirling(n,3,2) + stirling(n,2,2)^2
A381863
Number of triples of triangles that are pairwise edge-disjoint in the complete graph K_n.
Original entry on oeis.org
120, 1575, 10080, 44380, 154000, 451990, 1170400, 2748460, 5965960, 12137125, 23383360, 43006600, 75988640, 129645740, 214472000, 345209480, 542187800, 832980995, 1254434720, 1855122500, 2698295600, 3865397250, 5460218400, 7613778900, 10490025000
Offset: 6
a(6) = 120 gives the number of triples of edge-disjoint triangles in K_6.
- Julian Allagan, Edge-Disjoint Triangle Packings in Complete Graphs: Recurrence Relations and Closed Formulas. A revised proof version is to submitted to a Journal.
- Andrew Howroyd, Table of n, a(n) for n = 6..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
a[n_] := 120*Binomial[n, 6] + 735*Binomial[n, 7] + 840*Binomial[n, 8] + 280*Binomial[n, 9];
sequenceValues = Table[a[n], {n, 6, 30}]
A381862
Number of pairs of triangles that are pairwise edge-disjoint in the complete graph K_n.
Original entry on oeis.org
15, 100, 385, 1120, 2730, 5880, 11550, 21120, 36465, 60060, 95095, 145600, 216580, 314160, 445740, 620160, 847875, 1141140, 1514205, 1983520, 2567950, 3289000, 4171050, 5241600, 6531525, 8075340, 9911475, 12082560, 14635720, 17622880, 21101080, 25132800, 29786295
Offset: 5
a(5) = 15 because there are 15 unordered pairs of triangles that share 1 vertex.
a(6) = 100 = 90 + 10 because there are 90 = 15*binomial(6,5) unordered pairs of triangles that share 1 vertex and 10 = 10*binomial(6,6) unordered pairs of triangles that do not share a vertex.
- Julian Allagan, Edge-Disjoint Triangle Packings in Complete Graphs: Recurrence Relations and Closed Formulas. Submitted to Journal of Integer Sequences.
-
a[n_]:=n*(n-1)*(n-2)*(n-3)*(n-4)*(n+4)/72; Array[a,33,5] (* Stefano Spezia, Mar 09 2025 *)
-
def A381862(n): return n*(n*(n*(n*(n*(n-6)-5)+90)-176)+96)//72 # Chai Wah Wu, Mar 18 2025
A349418
a(n) is the Wiener index of a tridon on n vertices.
Original entry on oeis.org
16, 28, 46, 71, 104, 146, 198, 261, 336, 424, 526, 643, 776, 926, 1094, 1281, 1488, 1716, 1966, 2239, 2536, 2858, 3206, 3581, 3984, 4416, 4878, 5371, 5896, 6454, 7046, 7673, 8336, 9036, 9774, 10551, 11368, 12226, 13126, 14069, 15056, 16088, 17166, 18291, 19464, 20686
Offset: 5
For n=5, a(5)=16 gives the Wiener index of a star graph on 5 vertices. Also, for n=6, a(6)=28 gives the Wiener index of a tridon graph on 6 vertices.
*
*____\*____*____*
/
*
A349417
a(n) is the Wiener index of a sling on n+1 vertices.
Original entry on oeis.org
9, 18, 32, 52, 79, 114, 158, 212, 277, 354, 444, 548, 667, 802, 954, 1124, 1313, 1522, 1752, 2004, 2279, 2578, 2902, 3252, 3629, 4034, 4468, 4932, 5427, 5954, 6514, 7108, 7737, 8402, 9104, 9844, 10623, 11442, 12302, 13204, 14149, 15138, 16172, 17252, 18379, 19554, 20778
Offset: 3
For n=3, a(3)=9 gives the Wiener index of a star graph on 4 vertices. For n=4, a(4)=18 gives the Wiener index of a sling graph on 5 vertices.
*
*__\*__*__*
A349416
a(n) is the Wiener index of a broom on 2n vertices of which n+2 are pendant.
Original entry on oeis.org
25, 54, 100, 167, 259, 380, 534, 725, 957, 1234, 1560, 1939, 2375, 2872, 3434, 4065, 4769, 5550, 6412, 7359, 8395, 9524, 10750, 12077, 13509, 15050, 16704, 18475, 20367, 22384, 24530, 26809, 29225, 31782, 34484, 37335, 40339, 43500, 46822, 50309, 53965, 57794, 61800, 65987
Offset: 3
For n=3 the value a(3)=25 gives the Wiener index of a star graph on 6 vertices. For n=4, a(4)=54 gives the Wiener index of a broom graph on 8 vertices (6 of which are leaves).
* *
\ /
*__ \*/___*___*
/ \
/ \
* *
-
nterms=50;Table[2n^3/3+n^2/2+5n/6,{n,3,nterms+2}] (* Paolo Xausa, Nov 22 2021 *)
Comments