cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384968 Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete bipartite graph using exactly k interchangeable colors, 2 <= k <= 2*n.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 11, 6, 1, 1, 14, 61, 86, 50, 12, 1, 1, 30, 275, 770, 927, 530, 150, 20, 1, 1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1, 1, 126, 4571, 38626, 134981, 228382, 209428, 110768, 34902, 6580, 721, 42, 1, 1, 254, 18061, 248766, 1367310, 3553564, 4989621, 4093126, 2061782, 655788, 132958, 16996, 1316, 56, 1
Offset: 1

Views

Author

Andrew Howroyd, Jun 18 2025

Keywords

Comments

Permuting the colors does not change the coloring. T(n,k) is the number of ways to partition the vertices into k independent sets.

Examples

			Triangle begins (n >= 1, k >= 2):
  1;
  1,  2,    1;
  1,  6,   11,    6,     1;
  1, 14,   61,   86,    50,    12,    1;
  1, 30,  275,  770,   927,   530,  150,   20,   1;
  1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1;
  ...
		

Crossrefs

Row sums are A001247.
Columns k=2..5 are A000012, A000918, A384980, A384981.

Programs

  • PARI
    T(n,k) = sum(j=1, k-1, stirling(n,j,2)*stirling(n,k-j,2))
    for(n=1, 7, print(vector(2*n-1,k,T(n,k+1))))

Formula

T(n,k) = Sum_{j=1..k-1} Stirling2(n,j)*Stirling2(n,k-j).
T(n,k) = A274310(2*n-1, k-1).

A384980 Number of proper vertex colorings of the n-complete bipartite graph using exactly 4 interchangeable colors.

Original entry on oeis.org

0, 1, 11, 61, 275, 1141, 4571, 18061, 71075, 279781, 1103531, 4363261, 17292275, 68670421, 273152891, 1087959661, 4337751875, 17308485061, 69105848651, 276038071261, 1102994217875, 4408498475701, 17623550326811, 70462853802061, 281757339138275, 1126747061234341, 4506141224763371
Offset: 1

Views

Author

Julian Allagan, Jun 14 2025

Keywords

Comments

The complete bipartite graph K(n,n) has 2n vertices partitioned into two sets of size n each, with edges between every pair of vertices from different sets. a(n) counts the number of proper vertex colorings using exactly 4 colors; these are also the number of 4 partitions of the vertices of the 2n vertices. a(n) = 0 for n < 2.

Examples

			a(3) = 11 because K(3,3) has vertices {a1,a2,a3,b1,b2,b3} and there are 11 ways to color properly 6 vertices using all 4 colors.
		

Crossrefs

Column 4 of A384968.
Cf. A384981.

Programs

  • Mathematica
    Table[2*StirlingS2[n, 3] + StirlingS2[n, 2]^2, {n, 1, 50}]
  • PARI
    a(n) = 2*stirling(n,3,2) + stirling(n,2,2)^2

Formula

a(n) = Sum_{j = 1..3} Stirling2(n, j) * Stirling2(n, 4-j).
a(n)= (4^n)/4 + (3^n)/3 - 2^(n + 1) + 2.
G.f.: (1/4) * 1/(1 - 4*x) + (1/3) * 1/(1 - 3*x) - 2 * 1/(1 - 2*x) + 2 / (1 - x).
From Stefano Spezia, Jun 14 2025: (Start)
a(n) = 2 - 2^(n+2) + 3^n + 4^n.
E.g.f.: exp(x)*(2 - 4*exp(x) + exp(2*x) + exp(3*x)). (End)
Showing 1-2 of 2 results.