cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054647 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 12 1-simplexes.

Original entry on oeis.org

30, 2310, 42840, 391545, 2375100, 10980585, 41761720, 136963255, 399689290, 1060984925, 2603641040, 5979294230, 12973080120, 26794003110, 53000811600, 100914240770, 185718969590, 331524753560, 575738427880, 975199600375, 1614655942900, 2618302433175
Offset: 6

Views

Author

Vladeta Jovovic, Apr 16 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=4,l=12.
Numbers of sets of 4 triangles that are pairwise edge-disjoint in the complete graph K_n. - Julian Allagan, Mar 08 2025

References

  • Julian Allagan, Edge-Disjoint Triangle Packings in Complete Graphs: Recurrence Relations and Closed Formulas (submitted 2025)
  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Formula

a(n) = 30*C(n, 6)+2100*C(n, 7)+25200*C(n, 8)+86625*C(n, 9)+116550*C(n, 10)+69300*C(n, 11)+15400*C(n, 12) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n^6+3*n^5-86*n^4-240*n^3+2704*n^2+5232*n-34128)/31104.
G.f.: 5*x^6*(169*x^6-1119*x^5+2535*x^4-1245*x^3-3030*x^2-384*x-6)/(x-1)^13. [Colin Barker, Jun 22 2012]

Extensions

More terms from James Sellers, Apr 16 2000

A381862 Number of pairs of triangles that are pairwise edge-disjoint in the complete graph K_n.

Original entry on oeis.org

15, 100, 385, 1120, 2730, 5880, 11550, 21120, 36465, 60060, 95095, 145600, 216580, 314160, 445740, 620160, 847875, 1141140, 1514205, 1983520, 2567950, 3289000, 4171050, 5241600, 6531525, 8075340, 9911475, 12082560, 14635720, 17622880, 21101080, 25132800, 29786295
Offset: 5

Views

Author

Julian Allagan, Mar 08 2025

Keywords

Comments

In other words, the number of unordered pairs of triangles that share at most 1 vertex in the complete graph K_n.

Examples

			a(5) = 15 because there are 15 unordered pairs of triangles that share 1 vertex.
a(6) = 100 = 90 + 10 because there are 90 = 15*binomial(6,5) unordered pairs of triangles that share 1 vertex and 10 = 10*binomial(6,6) unordered pairs of triangles that do not share a vertex.
		

References

  • Julian Allagan, Edge-Disjoint Triangle Packings in Complete Graphs: Recurrence Relations and Closed Formulas. Submitted to Journal of Integer Sequences.

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(n-1)*(n-2)*(n-3)*(n-4)*(n+4)/72; Array[a,33,5] (* Stefano Spezia, Mar 09 2025 *)
  • Python
    def A381862(n): return n*(n*(n*(n*(n*(n-6)-5)+90)-176)+96)//72 # Chai Wah Wu, Mar 18 2025

Formula

a(n) = 10*binomial(n,6) + 3*n*binomial(n-1,4).
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n+4)/72.
G.f.: 5*x^5*(3 - x)/(1 - x)^7. - Stefano Spezia, Mar 09 2025
Showing 1-2 of 2 results.