A381869 Smallest starting prime for which the sum of 2*n consecutive primes is 0 modulo 10, or -1 if no such prime exists.
13, 11, 7, 7, 13, 17, 7, 17, 37, 3, 7, 41, 7, 7, 11, 11, 11, 11, 11, 13, 11, 13, 11, 7, 7, 17, 7, 43, 41, 3, 3, 13, 11, 7, 13, 19, 7, 11, 11, 29, 7, 43, 3, 7, 11, 13, 23, 29, 3, 7, 7, 11, 11, 11, 19, 13, 5, 5, 13, 37, 17, 3, 3, 7, 17, 17, 3, 11, 19, 13, 3, 7, 23
Offset: 1
Keywords
Examples
a(1) = 13, because 13 and 17 are 2*1 = 2 consecutive primes such that 13 + 17 = 20 and 20 modulo 10 = 0, and no smaller prime has this property.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:= select(isprime,[2,seq(i,i=3..10^6,2)]): S:= ListTools:-PartialSums(P): f:= proc(n) local j,t; for j from 1 do if S[2*n+j] - S[j] mod 10 = 0 then return P[j+1] fi od end proc: map(f, [$1..100]); # Robert Israel, May 08 2025
-
Mathematica
Do[i=1;Until[Mod[Total[Prime[Range[i,i+2*n-1]]],10]==0,i++];a[n]=Prime[i],{n,73}];Array[a,73] (* James C. McMahon, Mar 23 2025 *)
-
PARI
isok(p, n) = my(i=primepi(p), q=prime(2*n+i-1)); vecsum(apply(x->Mod(x,10), primes([p, q]))) == 0; a(n) = my(p=3); while (!isok(p, n), p=nextprime(p+1)); p; \\ Michel Marcus, Mar 09 2025
-
Python
from sympy import nextprime, prime, sieve def a(n): plst = list(sieve.primerange(3, prime(2*n+1)+1)) s = sum(plst) while s%10: q = nextprime(plst[-1]) s += (q-plst[0]) plst = plst[1:] + [q] return plst[0] print([a(n) for n in range(1, 74)]) # Michael S. Branicky, Mar 09 2025