cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A381875 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^2, where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 3, 13, 66, 368, 2185, 13570, 87147, 574241, 3861286, 26390591, 182798850, 1280387583, 9053335674, 64534088960, 463249047099, 3345832486407, 24296575830677, 177286818019264, 1299208549351640, 9557974679439901, 70563100013789595, 522608148884843970
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(3*n-3*k+1, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(3*n-3*k+1,n-k)/(n+k+1).
a(n) = binomial(1 + 3*n, n)*hypergeom([-1/2-n, -n, 1+n], [-1/3-n, 1/3-n], 2^2/3^3)/(1 + n). - Stefano Spezia, Mar 09 2025

A381876 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^3, where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 4, 23, 156, 1167, 9311, 77710, 670294, 5928183, 53467931, 489904745, 4547296624, 42667426369, 404044679434, 3856480309376, 37062228265769, 358330619946164, 3482936427997599, 34014454418349579, 333598711996924548, 3284326412065118717, 32446900771699499147
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(4*n-4*k+2, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(4*n-4*k+2,n-k)/(n+k+1).
a(n) = binomial(2 + 4*n, n)*hypergeom([-2/3-n, -1/3-n, -n, 1+n], [-1/2-n, -1/4-n, 1/4-n], 3^3/2^8)/(1 + n). - Stefano Spezia, Mar 09 2025

A381861 G.f. A(x) satisfies A(x) = (1 + x*A(x))^4 * C(x), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 32, 231, 1797, 14715, 125064, 1093194, 9766783, 88793815, 818832674, 7640868924, 72014955566, 684551660324, 6555290711728, 63179148757584, 612376024087047, 5965515657187437, 58375460484257734, 573545171374958628, 5655759227878768987, 55957005428512022905
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(4*n-4*k+4, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(4*n-4*k+4,n-k)/(n+k+1).
a(n) = binomial(4 + 4*n, n)*hypergeom([-4/3-n, -2/3-n, -n, 1+n], [-3/4-n, -1/2-n, -1/4-n], 3^3/2^8)/(1 + n). - Stefano Spezia, Mar 09 2025
Showing 1-3 of 3 results.