A381912 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / B(x) ), where B(x) is the g.f. of A001764.
1, 3, 17, 124, 1038, 9470, 91586, 923542, 9608323, 102403921, 1112500651, 12275235274, 137193964646, 1549964417407, 17672282336488, 203092563108610, 2350061579393077, 27357919380212638, 320186582453226290, 3765185566095185740, 44465070300433434901, 527131055014319691537
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n-k+1, n-k)/(n+3*k+1));
Formula
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^2.
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(3*n-k+1,n-k)/(n+3*k+1).