cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381930 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1,2} such that I(x) + W_0(x)*W_1(x) + W_0(x)*W_2(x) + W_1(x)*W_2(x) = k where I(x) is the number of inversions in x and W_i(x) is the number of occurrences of the letter i in x for i={0,1,2}, n>=0, 0<=k<=floor(2n^2/3).

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 0, 6, 7, 8, 2, 1, 3, 0, 0, 6, 9, 12, 18, 12, 12, 6, 3, 3, 0, 0, 0, 6, 6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3, 3, 0, 0, 0, 0, 6, 6, 6, 12, 18, 27, 33, 52, 62, 77, 82, 86, 75, 68, 48, 35, 19, 11, 2, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 10 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A342245(n).
Sum_{k>=0} T(n,k)*q^k = the number of ordered pairs (S,T) of idempotent n X n matrices over GF(q) such that ST=TS=S.

Examples

			Triangle T(n,k) begins:
  1;
  3;
  3, 3, 3;
  3, 0, 6, 7, 8,  2,  1;
  3, 0, 0, 6, 9, 12, 18, 12, 12,  6,  3;
  3, 0, 0, 0, 6,  6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3;
  ...
T(3,3) = 7 because we have: {0, 1, 0}, {0, 1, 2}, {0, 2, 0}, {1, 0, 1}, {1, 2, 1}, {2, 0, 2}, {2, 1, 2}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, j, k) option remember; expand(
         `if`(n=0, z^(i*j+i*k+j*k), b(n-1, i+1, j, k)*z^(j+k)+
          b(n-1, i, j+1, k)*z^k +b(n-1, i, j, k+1)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 10 2025
  • Mathematica
    nn = 6; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, q] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^3, {z, 0, nn}],z]] // Grid

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^3 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).
From Alois P. Heinz, Mar 10 2025: (Start)
Sum_{k>=0} k * T(n,k) = 9 * A027472(n+1).
Sum_{k>=0} (-1)^k * T(n,k) = A056449(n). (End)