A381959 Denominator of the sum of the reciprocals of the indices of distinct prime factors of n.
1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 6, 1, 7, 2, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 2, 12, 8, 3, 3, 13, 4, 14, 5, 6, 9, 15, 2, 4, 3, 14, 6, 16, 2, 15, 4, 8, 10, 17, 6, 18, 11, 4, 1, 2, 10, 19, 7, 18, 12, 20, 2, 21, 12, 6, 8, 20, 3, 22, 3, 2, 13, 23, 4, 21, 14, 5, 5, 24, 6, 12, 9, 22, 15, 24
Offset: 1
Examples
0, 1, 1/2, 1, 1/3, 3/2, 1/4, 1, 1/2, 4/3, 1/5, 3/2, 1/6, 5/4, 5/6, 1, 1/7, 3/2, 1/8, 4/3, ...
Programs
-
Mathematica
Join[{1}, Table[Plus @@ (1/PrimePi[#[[1]]] & /@ FactorInteger[n]), {n, 2, 95}] // Denominator] nmax = 95; CoefficientList[Series[Sum[x^Prime[k]/(k (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
-
PARI
a(n) = my(f=factor(n)); denominator(sum(k=1, #f~, 1/primepi(f[k,1]))); \\ Michel Marcus, Mar 11 2025
Formula
If n = Product (p_j^k_j) then a(n) = denominator of Sum (1/pi(p_j)).
G.f. for fractions: Sum_{k>=1} x^prime(k) / (k*(1 - x^prime(k))).