A382000
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^5.
Original entry on oeis.org
1, 1, 14, 342, 12872, 659280, 42828912, 3375009568, 312860626304, 33361836534144, 4023352486200320, 541461682626399744, 80448618080927609856, 13079749459734097573888, 2309915877337042992324608, 440332184936376095626076160, 90117169223076699520606896128
Offset: 0
A381984
E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 9, 94, 1649, 40146, 1246057, 47004014, 2087644449, 106709890114, 6170322084041, 398219508589662, 28376096583546769, 2212797385807852754, 187441592012756668329, 17139223549605292448686, 1682551982313514625386817, 176505773149909540258262274, 19704960849698723062181296009
Offset: 0
-
seq(simplify(hypergeom([-n, 1/3, 2/3], [3/2], -27/4)), n = 0..18); # Peter Bala, Mar 13 2025
-
Table[HypergeometricPFQ[{-n, 1/3, 2/3}, {3/2}, -27/4], {n, 0, 20}] (* Vaclav Kotesovec, Mar 14 2025 *)
-
a(n) = n!*sum(k=0, n, binomial(3*k+1, k)/((3*k+1)*(n-k)!));
A381985
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 13, 217, 5937, 223641, 10725433, 625007993, 42883208609, 3386452550689, 302545287708201, 30170153462509545, 3322052185576104049, 400328811249634307249, 52406094009429908677049, 7405663486143907784247481, 1123601498350780798756198209, 182173718779147621454796872769
Offset: 0
Showing 1-3 of 3 results.
Comments