cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382045 Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into at most k parts with 0 <= k <= n.

Original entry on oeis.org

1, 0, 3, 0, 6, 12, 0, 10, 28, 38, 0, 15, 66, 102, 117, 0, 21, 126, 249, 309, 330, 0, 28, 236, 562, 788, 878, 906, 0, 36, 396, 1167, 1845, 2205, 2331, 2367, 0, 45, 651, 2292, 4128, 5289, 5814, 5982, 6027, 0, 55, 1001, 4272, 8703, 12106, 13881, 14602, 14818, 14873, 0, 66, 1512, 7608, 17634, 26616, 32088, 34608, 35556, 35826, 35892
Offset: 0

Views

Author

Peter Dolland, Mar 13 2025

Keywords

Comments

The 1-color case is Euler's table A026820.
The 2-color case is A381891.

Examples

			Triangle starts:
 0 : [1]
 1 : [0,  3]
 2 : [0,  6,   12]
 3 : [0, 10,   28,   38]
 4 : [0, 15,   66,  102,   117]
 5 : [0, 21,  126,  249,   309,   330]
 6 : [0, 28,  236,  562,   788,   878,   906]
 7 : [0, 36,  396, 1167,  1845,  2205,  2331,  2367]
 8 : [0, 45,  651, 2292,  4128,  5289,  5814,  5982,  6027]
 9 : [0, 55, 1001, 4272,  8703, 12106, 13881, 14602, 14818, 14873]
10 : [0, 66, 1512, 7608, 17634, 26616, 32088, 34608, 35556, 35826, 35892]
...
		

Crossrefs

Main diagonal gives A217093.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1))*binomial(i*(i+3)/2+j, j)*x^j, j=0..n/i))))
        end:
    T:= proc(n, k) option remember;
         `if`(k<0, 0, T(n, k-1)+coeff(b(n$2), x, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 13 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i*(i + 3)/2 + j, j]*x^j, {j, 0, n/i}]]]];
    T[n_, k_] := T[n, k] = If[k < 0, 0, T[n, k-1] + Coefficient[b[n, n], x, k]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 21 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    from sympy.combinatorics.partitions import IntegerPartition
    colors = 3 - 1   # the number of colors - 1
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            p = IntegerPartition( p).as_dict()
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( binomial( k + colors, colors) + p[k] - 1, p[k])
            if s > 0 :
                t[s - 1] += fact
        for i in range( n - 1):
            t[i+1] += t[i]
        return [0] + t

Formula

T(n,1) = binomial(n + 2, 2) = A000217(n + 1) for n >= 1.