cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382101 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(B_k(x) - 1), where B_k(x) = 1 + x*B_k(x)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 43, 73, 1, 1, 1, 9, 91, 529, 501, 1, 1, 1, 11, 157, 1753, 8501, 4051, 1, 1, 1, 13, 241, 4129, 45001, 169021, 37633, 1, 1, 1, 15, 343, 8041, 146001, 1447471, 4010455, 394353, 1, 1, 1, 17, 463, 13873, 362501, 6502681, 56041987, 110676833, 4596553, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2025

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,      1,      1, ...
  1,   1,    1,     1,      1,      1, ...
  1,   3,    5,     7,      9,     11, ...
  1,  13,   43,    91,    157,    241, ...
  1,  73,  529,  1753,   4129,   8041, ...
  1, 501, 8501, 45001, 146001, 362501, ...
		

Crossrefs

Columns k=0..4 give A000012, A000262, A251568, A380512, A380516.

Programs

  • PARI
    a(n, k) = if(n==0, 1, (n-1)!*pollaguerre(n-1, (k-1)*n+1, -1));

Formula

A(n,k) = (n-1)! * Sum_{j=0..n-1} binomial(k*n,j)/(n-j-1)! for n > 0.
A(n,k) = (n-1)! * LaguerreL(n-1, (k-1)*n+1, -1) for n > 0.
E.g.f. of column k: exp( Series_Reversion( x/(1+x)^k ) ).