A382100 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 8, 1, 1, 1, 5, 19, 35, 16, 1, 1, 1, 6, 31, 98, 126, 32, 1, 1, 1, 7, 46, 213, 531, 462, 64, 1, 1, 1, 8, 64, 396, 1556, 2974, 1716, 128, 1, 1, 1, 9, 85, 663, 3651, 11843, 17060, 6435, 256, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, ... 1, 4, 10, 19, 31, 46, 64, ... 1, 8, 35, 98, 213, 396, 663, ... 1, 16, 126, 531, 1556, 3651, 7391, ... 1, 32, 462, 2974, 11843, 35232, 86488, ...
Crossrefs
Programs
-
PARI
a(n, k) = polcoef(1/(2-sum(j=0, n, binomial(k*j+1, j)/(k*j+1)*x^j+x*O(x^n))), n);
-
PARI
a(n, k) = if(n==0, 1, (binomial(k*n, n)-(k-2)*sum(j=0, n-1, binomial(k*n, j)))/2);
Formula
A(n,k) = ( binomial(k*n,n) - (k-2) * Sum_{j=0..n-1} binomial(k*n,j) )/2 for n > 0.
G.f. of column k: 1/( 1 - Series_Reversion( x/(1+x)^k ) ).