A382120 Numbers k in A024619 such that there exists a prime p | k for which p^(m+1) == r (mod k), where r is also in A024619, and a prime q | k for which q^(m+1) == r (mod k), where r is a prime power.
10, 18, 20, 21, 22, 26, 28, 30, 34, 36, 38, 40, 42, 46, 48, 50, 52, 54, 55, 57, 58, 60, 68, 72, 74, 78, 82, 84, 86, 93, 94, 96, 98, 100, 106, 108, 110, 111, 114, 116, 117, 118, 122, 124, 126, 129, 132, 134, 136, 142, 146, 147, 148, 150, 156, 158, 162, 164, 165
Offset: 1
Keywords
Examples
Table of a(n) for select n, showing prime decomposition (facs(a(n))), p_x^(m+1) mod n, where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. Brackets appear around residues that are not prime powers. p_x^(m+1) mod n n a(n) facs(a(n)) p_1 p_2 p_3 ----------------------------------------- 1 10 2 * 5 [6] 5 2 18 2 * 3^2 [14] 9 3 20 2^2 * 5 [12] 5 4 21 3 * 7 [6] 7 5 22 2 * 11 [10] 11 6 26 2 * 13 [6] 13 7 28 2^2 * 7 4 [21] 8 30 2 * 3 * 5 2 [21] 5 9 34 2 * 17 [30] 17 10 36 2^2 * 3^2 [28] 9 11 38 2 * 19 [26] 19 22 60 2^2 * 3 * 5 4 [21] 5
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 165, Reap[Do[If[! PrimePowerQ[n], If[CountDistinct@ Map[Boole@ PrimePowerQ@ PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ] == 2, Sow[n]]], {n, 2, nn}] ][[-1, 1]]
Comments