cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382122 G.f. satisfies Sum_{n>=0} x^n * abs(1/A(x)^n) = C(x), where C(x) = 1 + x*C(x)^2 and abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x).

Original entry on oeis.org

1, 1, 3, 12, 49, 202, 838, 3486, 14575, 60820, 254406, 1061438, 4444802, 18602018, 78066384, 326985608, 1365996909, 5697914836, 23752394338, 99027785702, 413203462516, 1726164299990, 7219911692522, 30228722494504, 126658682953328, 530772842793396, 2224199143900798, 9319843329508200, 39051457052597480
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2025

Keywords

Comments

Compare to Sum_{n>=0} x^n * C(x)^n = C(x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Conjecture: for n > 0, a(n) is odd iff n = 2^k for k >= 0.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 49*x^4 + 202*x^5 + 838*x^6 + 3486*x^7 + 14575*x^8 + 60820*x^9 + 254406*x^10 + 1061438*x^11 + 4444802*x^12 + ...
Below we illustrate the defining property of this sequence.
The coefficients in 1/A(x)^n begin
 1: [1,  -1, -2,  -7, -24, -84, -298, -1063, ...];
 2: [1,  -2, -3, -10, -30, -92, -283,  -858, ...];
 3: [1,  -3, -3, -10, -24, -57, -119,  -156, ...];
 4: [1,  -4, -2,  -8, -11,  -4,   82,   568, ...];
 5: [1,  -5,  0,  -5,   5,  49,  250,  1060, ...];
 6: [1,  -6,  3,  -2,  21,  90,  348,  1224, ...];
 7: [1,  -7,  7,   0,  35, 112,  364,  1070, ...];
 8: [1,  -8, 12,   0,  46, 112,  304,   672, ...];
 9: [1,  -9, 18,  -3,  54,  90,  186,   135, ...];
10: [1, -10, 25, -10,  60,  48,   35,  -430, ...];
...
The table of unsigned coefficients that form the series abs(1/A(x)^n) begins
 0: [1,  0,  0,  0,  0,   0,   0,    0,    0, ...];
 1: [1,  1,  2,  7, 24,  84, 298, 1063, 3858, ...];
 2: [1,  2,  3, 10, 30,  92, 283,  858, 2646, ...];
 3: [1,  3,  3, 10, 24,  57, 119,  156,  144, ...];
 4: [1,  4,  2,  8, 11,   4,  82,  568, 2578, ...];
 5: [1,  5,  0,  5,  5,  49, 250, 1060, 3800, ...];
 6: [1,  6,  3,  2, 21,  90, 348, 1224, 3654, ...];
 7: [1,  7,  7,  0, 35, 112, 364, 1070, 2394, ...];
 8: [1,  8, 12,  0, 46, 112, 304,  672,  469, ...];
 9: [1,  9, 18,  3, 54,  90, 186,  135, 1629, ...];
10: [1, 10, 25, 10, 60,  48,  35,  430, 3465, ...];
...
the antidiagonals of which add to the Catalan numbers (A000108):
  1 = 1;
  0 + 1 = 1;
  0 + 1 + 1 = 2;
  0 + 2 + 2 + 1 = 5;
  0 + 7 + 3 + 3 + 1 = 14;
  0 + 24 + 10 + 3 + 4 + 1 = 42;
  0 + 84 + 30 + 10 + 2 + 5 + 1 = 132;
  0 + 298 + 92 + 24 + 8 + 0 + 6 + 1 = 429;
  0 + 1063 + 283 + 57 + 11 + 5 + 3 + 7 + 1 = 1430;
  0 + 3858 + 858 + 119 + 4 + 5 + 2 + 7 + 8 + 1 = 4862;
  ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[1,1], A, C = (1/x)*serreverse(x - x^2 +x^4*O(x^n)));
    for(i=1,n, V = concat(V,'t); A = Ser(V);
    V[#V] = 't + polcoef(C - sum(m=1,#V+1, x^m * Ser(abs(Vec( 1/A^m ))) ),#V) );V[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) Sum_{n>=0} x^n * abs(1/A(x)^n) = C(x), where C(x) = 1 + x*C(x)^2.
(2) Sum_{k=0..n} abs( [x^k] 1/A(x)^(n-k) ) = binomial(2*n+1,n)/(2*n+1) for n >= 0.
a(n) ~ c * d^n, where d = 4.1935797816358..., c = 0.142779... - Vaclav Kotesovec, Mar 28 2025