A382122 G.f. satisfies Sum_{n>=0} x^n * abs(1/A(x)^n) = C(x), where C(x) = 1 + x*C(x)^2 and abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x).
1, 1, 3, 12, 49, 202, 838, 3486, 14575, 60820, 254406, 1061438, 4444802, 18602018, 78066384, 326985608, 1365996909, 5697914836, 23752394338, 99027785702, 413203462516, 1726164299990, 7219911692522, 30228722494504, 126658682953328, 530772842793396, 2224199143900798, 9319843329508200, 39051457052597480
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 49*x^4 + 202*x^5 + 838*x^6 + 3486*x^7 + 14575*x^8 + 60820*x^9 + 254406*x^10 + 1061438*x^11 + 4444802*x^12 + ... Below we illustrate the defining property of this sequence. The coefficients in 1/A(x)^n begin 1: [1, -1, -2, -7, -24, -84, -298, -1063, ...]; 2: [1, -2, -3, -10, -30, -92, -283, -858, ...]; 3: [1, -3, -3, -10, -24, -57, -119, -156, ...]; 4: [1, -4, -2, -8, -11, -4, 82, 568, ...]; 5: [1, -5, 0, -5, 5, 49, 250, 1060, ...]; 6: [1, -6, 3, -2, 21, 90, 348, 1224, ...]; 7: [1, -7, 7, 0, 35, 112, 364, 1070, ...]; 8: [1, -8, 12, 0, 46, 112, 304, 672, ...]; 9: [1, -9, 18, -3, 54, 90, 186, 135, ...]; 10: [1, -10, 25, -10, 60, 48, 35, -430, ...]; ... The table of unsigned coefficients that form the series abs(1/A(x)^n) begins 0: [1, 0, 0, 0, 0, 0, 0, 0, 0, ...]; 1: [1, 1, 2, 7, 24, 84, 298, 1063, 3858, ...]; 2: [1, 2, 3, 10, 30, 92, 283, 858, 2646, ...]; 3: [1, 3, 3, 10, 24, 57, 119, 156, 144, ...]; 4: [1, 4, 2, 8, 11, 4, 82, 568, 2578, ...]; 5: [1, 5, 0, 5, 5, 49, 250, 1060, 3800, ...]; 6: [1, 6, 3, 2, 21, 90, 348, 1224, 3654, ...]; 7: [1, 7, 7, 0, 35, 112, 364, 1070, 2394, ...]; 8: [1, 8, 12, 0, 46, 112, 304, 672, 469, ...]; 9: [1, 9, 18, 3, 54, 90, 186, 135, 1629, ...]; 10: [1, 10, 25, 10, 60, 48, 35, 430, 3465, ...]; ... the antidiagonals of which add to the Catalan numbers (A000108): 1 = 1; 0 + 1 = 1; 0 + 1 + 1 = 2; 0 + 2 + 2 + 1 = 5; 0 + 7 + 3 + 3 + 1 = 14; 0 + 24 + 10 + 3 + 4 + 1 = 42; 0 + 84 + 30 + 10 + 2 + 5 + 1 = 132; 0 + 298 + 92 + 24 + 8 + 0 + 6 + 1 = 429; 0 + 1063 + 283 + 57 + 11 + 5 + 3 + 7 + 1 = 1430; 0 + 3858 + 858 + 119 + 4 + 5 + 2 + 7 + 8 + 1 = 4862; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..521
Programs
-
PARI
{a(n) = my(V=[1,1], A, C = (1/x)*serreverse(x - x^2 +x^4*O(x^n))); for(i=1,n, V = concat(V,'t); A = Ser(V); V[#V] = 't + polcoef(C - sum(m=1,#V+1, x^m * Ser(abs(Vec( 1/A^m ))) ),#V) );V[n+1]} for(n=0,30,print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) Sum_{n>=0} x^n * abs(1/A(x)^n) = C(x), where C(x) = 1 + x*C(x)^2.
(2) Sum_{k=0..n} abs( [x^k] 1/A(x)^(n-k) ) = binomial(2*n+1,n)/(2*n+1) for n >= 0.
a(n) ~ c * d^n, where d = 4.1935797816358..., c = 0.142779... - Vaclav Kotesovec, Mar 28 2025
Comments