A319384 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=5, a(2)=9, a(3)=21, a(4)=29.
1, 5, 9, 21, 29, 49, 61, 89, 105, 141, 161, 205, 229, 281, 309, 369, 401, 469, 505, 581, 621, 705, 749, 841, 889, 989, 1041, 1149, 1205, 1321, 1381, 1505, 1569, 1701, 1769, 1909, 1981, 2129, 2205, 2361, 2441, 2605, 2689, 2861, 2949, 3129, 3221, 3409, 3505, 3701, 3801, 4005, 4109, 4321, 4429, 4649, 4761, 4989, 5105, 5341, 5461
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jan 19 2021
-
Mathematica
Table[(6 n^2 + 6 n + 5 - (2 n + 1)*(-1)^n)/4, {n, 0, 80}] (* Wesley Ivan Hurt, Jan 07 2021 *)
-
PARI
Vec((1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jun 05 2019
-
Python
def A319384(n): return (n*(3*n+4)+3 if n&1 else n*(3*n+2)+2)>>1 # Chai Wah Wu, Mar 25 2025
Formula
a(-n) = a(n).
a(2*n) + a(2*n+1) = 6*A001844(n).
a(n) = (6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4. - Wesley Ivan Hurt, Oct 04 2018
G.f.: (1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jun 05 2019
Extensions
More terms from N. J. A. Sloane, Mar 23 2025
Comments