cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382188 Expansion of 1/(1 - 9 * Sum_{k>=0} x^(2^k))^(1/3).

Original entry on oeis.org

1, 3, 21, 162, 1344, 11565, 102033, 916002, 8330331, 76515363, 708379137, 6600436794, 61829064882, 581783753232, 5495344743924, 52079440119336, 494985533135250, 4716537209764020, 45043670723519952, 431041661857081656, 4132290587464466820, 39680088682182010749
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/(1/A(x^2)^3 - 9*x)^(1/3).

A382365 Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/2).

Original entry on oeis.org

1, 2, 10, 46, 232, 1174, 6078, 31786, 167836, 892258, 4770466, 25622286, 138146540, 747253022, 4053224974, 22038282338, 120079277626, 655486778654, 3584062901182, 19625809294386, 107610733877720, 590751275348362, 3246588926918074, 17860031073624694
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/( 1/A(x^2)^2 - 4*x/(1-x) )^(1/2).
Showing 1-2 of 2 results.