cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382187 Expansion of 1/(1 - 4 * Sum_{k>=0} x^(2^k))^(1/2).

Original entry on oeis.org

1, 2, 8, 32, 138, 604, 2696, 12176, 55512, 254888, 1177064, 5461040, 25435296, 118856272, 556962928, 2616287392, 12315914698, 58084552572, 274395134600, 1298187523792, 6150051540460, 29170558879736, 138512004786624, 658362443599296, 3132140164624680
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/(1/A(x^2)^2 - 4*x)^(1/2).

A382366 Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/3).

Original entry on oeis.org

1, 3, 24, 201, 1818, 17004, 163068, 1590798, 15718899, 156860076, 1577644998, 15969030780, 162498057048, 1660951840611, 17042090466264, 175436835017475, 1811209862304735, 18746380864328061, 194465530800628908, 2021343414865754583, 21048513676138546848
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/( 1/A(x^2)^3 - 9*x/(1-x) )^(1/3).
Showing 1-2 of 2 results.