cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382225 Triangle read by rows: T(n,k) = Sum_{i=k..n} C(i-1,i-k)*C(i,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 13, 1, 1, 15, 65, 73, 21, 1, 1, 21, 140, 273, 171, 31, 1, 1, 28, 266, 798, 871, 346, 43, 1, 1, 36, 462, 1974, 3321, 2306, 631, 57, 1, 1, 45, 750, 4326, 10377, 11126, 5335, 1065, 73, 1, 1, 55, 1155, 8646, 28017, 42878, 31795, 11145, 1693, 91, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 19 2025

Keywords

Comments

Triangle T(n,k) of minors of the main diagonal of Pascal's matrix, n -size matrix, k - number of element of diagonal.

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   7,   1;
  1, 10,  25,  13,   1;
  1, 15,  65,  73,  21,  1;
  1, 21, 140, 273, 171, 31, 1;
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A000217, A001296(n-1) for n>=1, A107963(n-3) for n>=3.
Row sums give A024718.
T(n+1,n) gives A002061(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n<0, 0,
          T(n-1, k)+binomial(n-1, k-1)*binomial(n, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 20 2025
  • Mathematica
    A382225[n_, k_] := A382225[n, k] = If[k == n, 1, A382225[n-1, k] + Binomial[n-1, k-1]*Binomial[n, k]];
    Table[A382225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 22 2025 *)
  • Maxima
    h[i,j]:=binomial(i+j-3,i-1);
    for n:1 thru 7 do
        if n=1 then print([1])
        else (M:genmatrix(h,n,n),
              print(makelist(determinant(minor(M,k,k)),k,1,n))
             );

Formula

G.f.: 1/(1-x) * ((1-x*(1-y))/(2*(sqrt((1-x*(1+y))^2-4*x^2*y)))+1/2).
T(n,k) = T(n-1,k)+C(n-1,k-1)*C(n,k).