A382237 Numbers that are not divisible by the sum of any subset of their digits.
23, 29, 34, 37, 38, 43, 46, 47, 49, 53, 56, 57, 58, 59, 67, 68, 69, 73, 74, 76, 78, 79, 83, 86, 87, 89, 94, 97, 98, 203, 223, 227, 229, 233, 239, 249, 253, 257, 263, 267, 269, 277, 283, 293, 299, 307, 323, 329, 334, 337, 338, 346, 347, 349, 353, 356, 358, 359, 367, 373, 376, 377, 379, 380, 383, 386, 388, 389, 394, 397, 398, 403
Offset: 1
Examples
358 is in the sequence because it can't be divided by 3, 5, 8, (3+5)=8, (3+8)=11, (5+8)=13 or (3+5+8)=16. 289 is not in the sequence because it can be divided by (8+9)=17.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local L,S; L:= convert(n,base,10); andmap(s -> s=0 or n mod s <> 0, map(convert,combinat:-choose(L),`+`)) end proc: select(filter, [$1..1000]); # Robert Israel, Mar 19 2025
-
PARI
isok(k) = my(d=digits(k)); forsubset(#d, s, my(ss=sum(i=1, #s, d[s[i]])); if (ss && !(k % sum(i=1, #s, d[s[i]])), return(0))); return(1); \\ Michel Marcus, Mar 27 2025
-
Python
from itertools import chain, combinations def powerset(s): # skipping empty set return chain.from_iterable(combinations(s, r) for r in range(1, len(s)+1)) def ok(n): return all(n%t!=0 for s in powerset(list(map(int, str(n)))) if (t:=sum(s))>0) print([k for k in range(1, 404) if ok(k)]) # Michael S. Branicky, Apr 01 2025
Comments