cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382241 Triangle read by rows: T(n,k) is the number of partitions of a 4-colored set of n objects into at most k parts with 0 <= k <= n.

Original entry on oeis.org

1, 0, 4, 0, 10, 20, 0, 20, 60, 80, 0, 35, 170, 270, 305, 0, 56, 396, 816, 1016, 1072, 0, 84, 868, 2238, 3188, 3538, 3622, 0, 120, 1716, 5616, 9196, 10996, 11556, 11676, 0, 165, 3235, 13140, 24975, 32400, 35445, 36285, 36450, 0, 220, 5720, 28900, 63680, 90700, 104060, 108820, 110020, 110240
Offset: 0

Views

Author

Peter Dolland, Mar 19 2025

Keywords

Comments

Two unrestricted unary predicates on the n objects mean four colors: The intersection, the both differences, and the complement of the union.
The 1-color case is Euler's table A026820.
The 2-color case is A381891.
The 3-color case is A382045.

Examples

			Triangle starts:
 0 : [1]
 1 : [0,   4]
 2 : [0,  10,   20]
 3 : [0,  20,   60,    80]
 4 : [0,  35,  170,   270,    305]
 5 : [0,  56,  396,   816,   1016,   1072]
 6 : [0,  84,  868,  2238,   3188,   3538,   3622]
 7 : [0, 120, 1716,  5616,   9196,  10996,  11556,  11676]
 8 : [0, 165, 3235, 13140,  24975,  32400,  35445,  36285,  36450]
 9 : [0, 220, 5720, 28900,  63680,  90700, 104060, 108820, 110020, 110240]
10 : [0, 286, 9752, 60232, 154262, 242254, 294140, 315980, 323000, 324650, 324936]
...
		

Crossrefs

Main diagonal gives A255050.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1))*binomial(i*(i^2+6*i+11)/6+j, j)*x^j, j=0..n/i))))
        end:
    T:= proc(n, k) option remember;
         `if`(k<0, 0, T(n, k-1)+coeff(b(n$2), x, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 19 2025
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    from sympy.combinatorics.partitions import IntegerPartition
    colors = 4 - 1   # the number of colors - 1
    def a382241_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            p = IntegerPartition( p).as_dict()
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( binomial( k + colors, colors) + p[k] - 1, p[k])
            if s > 0 :
                t[s - 1] += fact
        for i in range( n - 1):
            t[i+1] += t[i]
        return [0] + t

Formula

T(n,1) = binomial(n + 3, 3) = A000292(n + 1) for n >= 1.