A382312 Irregular triangle read by rows: T(n,k) is the number of compositions of n with k records.
1, 0, 1, 0, 2, 0, 3, 1, 0, 5, 3, 0, 8, 8, 0, 14, 17, 1, 0, 24, 36, 4, 0, 43, 72, 13, 0, 77, 143, 36, 0, 140, 281, 90, 1, 0, 256, 550, 213, 5, 0, 472, 1073, 484, 19, 0, 874, 2093, 1068, 61, 0, 1628, 4079, 2308, 177, 0, 3045, 7950, 4912, 476, 1, 0, 5719, 15498, 10328, 1217, 6
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 n= 0 1; n= 1 0, 1; n= 2 0, 2; n= 3 0, 3, 1; n= 4 0, 5, 3; n= 5 0, 8, 8; n= 6 0, 14, 17, 1; n= 7 0, 24, 36, 4; n= 8 0, 43, 72, 13; n= 9 0, 77, 143, 36; n=10 0, 140, 281, 90, 1; ... The composition (2,1,1,2,4,2,1,5,7) has 4 records. ^ ^ ^ ^ T(4,1) = 5 counts: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). T(4,2) = 3 counts: (1,1,2), (1,2,1), (1,1,3).
Links
- Alois P. Heinz, Rows n = 0..500, flattened (first 201 rows from John Tyler Rascoe)
Programs
-
Maple
b:= proc(n, m) option remember; expand(`if`(n=0, 1, add( b(n-j, max(m, j))*`if`(j>m, x, 1), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..16); # Alois P. Heinz, Mar 28 2025
-
PARI
T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h=prod(i=1,N,1+y*x^i*(1-x)/(1-2*x+x^(i+1)))); vector(N, n, Vecrev(polcoeff(h, n-1)))} T_xy(12)
Formula
G.f.: Product_{i>0} (1 + y*x^i * (1 - x)/(1 - 2*x + x^(i+1))).
Sum_{k>0} T(n,k)*k = A336482(n).
Comments