A382342 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of two kinds.
1, 0, 2, 0, 2, 3, 0, 2, 4, 4, 0, 2, 7, 6, 5, 0, 2, 8, 12, 8, 6, 0, 2, 11, 18, 17, 10, 7, 0, 2, 12, 26, 28, 22, 12, 8, 0, 2, 15, 34, 46, 38, 27, 14, 9, 0, 2, 16, 46, 64, 66, 48, 32, 16, 10, 0, 2, 19, 56, 94, 100, 86, 58, 37, 18, 11, 0, 2, 20, 70, 124, 152, 136, 106, 68, 42, 20, 12
Offset: 0
Examples
Triangle starts: 0 : [1] 1 : [0, 2] 2 : [0, 2, 3] 3 : [0, 2, 4, 4] 4 : [0, 2, 7, 6, 5] 5 : [0, 2, 8, 12, 8, 6] 6 : [0, 2, 11, 18, 17, 10, 7] 7 : [0, 2, 12, 26, 28, 22, 12, 8] 8 : [0, 2, 15, 34, 46, 38, 27, 14, 9] 9 : [0, 2, 16, 46, 64, 66, 48, 32, 16, 10] 10 : [0, 2, 19, 56, 94, 100, 86, 58, 37, 18, 11] ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+1), j=0..n/i)))) end: T:= (n, k)-> coeff(b(n$2), x, k): seq(seq(T(n, k), k=0..n), n=0..11); # Alois P. Heinz, Mar 27 2025
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n - i*j, Min[n - i*j, i - 1]]*(j + 1), {j, 0, n/i}]]]]; T[n_, k_] := Coefficient[b[n, n], x, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)
-
Python
from sympy.utilities.iterables import partitions def t_row( n): if n == 0 : return [1] t = list( [0] * n) for p in partitions( n): fact = 1 s = 0 for k in p : s += p[k] fact *= 1 + p[k] if s > 0 : t[s - 1] += fact return [0] + t
Formula
T(n,n) = n + 1.
T(n,1) = 2 for n >= 1.
Sum_{k=0..n} (-1)^k * T(n,k) = A022597(n). - Alois P. Heinz, Mar 27 2025