A382344 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 4 kinds.
1, 0, 4, 0, 4, 10, 0, 4, 16, 20, 0, 4, 26, 40, 35, 0, 4, 32, 80, 80, 56, 0, 4, 42, 124, 180, 140, 84, 0, 4, 48, 184, 320, 340, 224, 120, 0, 4, 58, 248, 535, 660, 574, 336, 165, 0, 4, 64, 332, 800, 1200, 1184, 896, 480, 220, 0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286
Offset: 0
Examples
Triangle starts: 0 : [1] 1 : [0, 4] 2 : [0, 4, 10] 3 : [0, 4, 16, 20] 4 : [0, 4, 26, 40, 35] 5 : [0, 4, 32, 80, 80, 56] 6 : [0, 4, 42, 124, 180, 140, 84] 7 : [0, 4, 48, 184, 320, 340, 224, 120] 8 : [0, 4, 58, 248, 535, 660, 574, 336, 165] 9 : [0, 4, 64, 332, 800, 1200, 1184, 896, 480, 220] 10 : [0, 4, 74, 416, 1176, 1956, 2284, 1932, 1320, 660, 286] ...
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, min(n-i*j, i-1))*binomial(j+3, 3), j=0..n/i)))) end: T:= (n, k)-> coeff(b(n$2), x, k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 28 2025
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*Binomial[j+3, 3], {j, 0, n/i}]]]]; T[n_, k_] := Coefficient[b[n, n], x, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Aug 07 2025, after Alois P. Heinz *)
-
Python
from sympy import binomial from sympy.utilities.iterables import partitions kinds = 4 - 1 # the number of part kinds - 1 def t_row( n): if n == 0 : return [1] t = list( [0] * n) for p in partitions( n): fact = 1 s = 0 for k in p : s += p[k] fact *= binomial( kinds + p[k], kinds) if s > 0 : t[s - 1] += fact return [0] + t
Formula
T(n,n) = binomial(n + 3, 3) = A000292(n + 1).
T(n,1) = 4 for n >= 1.
Sum_{k=0..n} (-1)^k * T(n,k) = A022599(n). - Alois P. Heinz, Mar 28 2025