cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382384 Number of minimum connected dominating sets in the n-Goldberg graph.

Original entry on oeis.org

6, 96, 290, 744, 1974, 5376, 15642, 45480, 124014, 343008, 944658, 2596776, 7116390, 19409664, 52694730, 142812648, 385840030, 1039911520, 2796034626, 7501233256, 20084164374, 53677896192, 143214557050, 381504047912, 1014784646094, 2695617288672, 7151420301682
Offset: 3

Views

Author

Eric W. Weisstein, Mar 23 2025

Keywords

Comments

The connected domination number is given by 4*n - 1 = A004767(n - 1). - Andrew Howroyd, May 25 2025

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, 2, -16, -7, 20, 24, -64, 97, 236, -246, -368, 7, 252, -772, -64, 1920, 0, -1024}, {6, 96, 290, 744, 1974, 5376, 15642, 45480, 124014, 343008, 944658, 2596776, 7116390, 19409664, 52694730, 142812648, 385840030, 1039911520}, 20] (* Eric W. Weisstein, Jun 04 2025 *)
    CoefficientList[Series[2 (3 + 36 x - 53 x^2 - 256 x^3 - 2 x^4 + 592 x^5 + 1030 x^6 + 616 x^7 - 2817 x^8 - 2804 x^9 + 2591 x^10 + 2200 x^11 - 2592 x^12 - 2176 x^13 + 5168 x^14 + 3840 x^15 - 2304 x^16 - 2048 x^17)/((1 - x)^2 (1 + x)^2 (1 - x - 4 x^2)^2 (1 - x + 2 x^2)^2 (1 - x^2 - 4 x^3)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 04 2025 *)

Formula

G.f.: 2*x^3*(3 + 36*x - 53*x^2 - 256*x^3 - 2*x^4 + 592*x^5 + 1030*x^6 + 616*x^7 - 2817*x^8 - 2804*x^9 + 2591*x^10 + 2200*x^11 - 2592*x^12 - 2176*x^13 + 5168*x^14 + 3840*x^15 - 2304*x^16 - 2048*x^17)/((1 - x)*(1 + x)*(1 - x + 2*x^2)*(1 - x - 4*x^2)*(1 - x^2 - 4*x^3))^2. - Andrew Howroyd, May 25 2025

Extensions

a(7) onwards from Andrew Howroyd, May 24 2025