A382399 Number of subsets of Z_n such that every ordered pair of distinct elements has a different difference.
1, 2, 3, 7, 9, 16, 19, 43, 49, 100, 91, 177, 193, 352, 323, 691, 673, 1242, 1135, 2129, 2041, 3634, 3103, 5843, 5473, 9326, 8139, 16579, 14001, 24796, 21271, 38813, 34369, 60292, 49539, 86451, 81361, 131684, 110391, 196717, 171761, 286878, 236167, 419337, 370569, 618346, 501999, 872415, 763777, 1235438, 1028451
Offset: 0
Keywords
Examples
The a(0) = 1 through a(5) = 16 subsets: {} {} {} {} {} {} {0} {0} {0} {0} {0} {1} {1} {1} {1} {2} {2} {2} {0,1} {3} {3} {0,2} {0,1} {4} {1,2} {0,3} {0,1} {1,2} {0,2} {2,3} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..80
- Wikipedia, Sidon sequence.
- Index entries for sequences related to Golomb rulers.
Programs
-
PARI
a(n)={ my(recurse(k,r,b,w)= if(k >= n, 1, b+=1<
Formula
a(n) = n*A325681(n) + 1.
Comments