A364668 Domination and lower independence number of the n-Goldberg graph.
0, 3, 5, 7, 9, 11, 14, 16, 18, 20, 22, 25, 27, 29, 31, 33, 36, 38, 40, 42, 44, 47, 49, 51, 53, 55, 58, 60, 62, 64, 66, 69, 71, 73, 75, 77, 80, 82, 84, 86, 88, 91, 93, 95, 97, 99, 102, 104, 106, 108, 110, 113, 115, 117, 119, 121, 124, 126, 128, 130, 132
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Domination Number.
- Eric Weisstein's World of Mathematics, Goldberg Graph.
- Eric Weisstein's World of Mathematics, Lower Independence Number.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A382431.
Programs
-
Mathematica
Table[(11 n - Cos[2 n Pi/5] - Cos[4 n Pi/5] + Sqrt[1 + 2/Sqrt[5]] Sin[2 n Pi/5] + Sqrt[1 - 2/Sqrt[5]] Sin[4 n Pi/5] + 2)/5, {n, 0, 20}] LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 3, 5, 7, 9, 11}, 20] CoefficientList[Series[x (3 + 2 x + 2 x^2 + 2 x^3 + 2 x^4)/((-1 + x)^2 (1 + x + x^2 + x^3 + x^4)), {x, 0, 20}], x]
Formula
a(n) = a(n-1) + a(n-5) - a(n-6).
G.f.: x*(3+2*x+2*x^2+2*x^3+2*x^4)/((-1+x)^2*(1+x+x^2+x^3+x^4)).
a(n) = floor((11*n + 4)/5). - Andrew Howroyd, May 25 2025
Extensions
Name extended by Eric W. Weisstein, Mar 10 2025
Comments