cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381676 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^2.

Original entry on oeis.org

1, 1, 4, 17, 86, 472, 2752, 16753, 105394, 680366, 4484360, 30067160, 204508240, 1408057120, 9796738304, 68786005361, 486845236106, 3470187822754, 24891491746792, 179556655434382, 1301857088258836, 9482632068303296, 69361538748381824, 509303099950899352
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [ &+[Binomial(n, k)^2 * (Binomial(n, k) - (k gt 0 select Binomial(n, k-1) else 0)) : k in [0..n]] : n in [0..20] ]; // Vincenzo Librandi, Mar 27 2025
  • Mathematica
    Table[Sum[Binomial[n,k]^2*(Binomial[n,k]-Binomial[n,k-1]),{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^2);
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) ).
a(n) ~ 2^(3*n+3) / (Pi * 3^(3/2) * n^2). - Vaclav Kotesovec, Mar 26 2025

A382446 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^6.

Original entry on oeis.org

1, 1, 4, 257, 4286, 258952, 11816512, 632854273, 43732565914, 2637804065366, 207379028199080, 14568483339859880, 1205457271871693920, 95108827011788280160, 8187664948710535579904, 698818327346476962092801, 62477582066507173352034866, 5627626080883126186936773514
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, k)* (Binomial(n, k) - Binomial (n, k-1))^6: k in [0..n]]: n in [0..21]]; // Vincenzo Librandi, Mar 30 2025
  • Mathematica
    Table[Sum[Binomial[n,k]*(Binomial[n,k]-Binomial[n,k-1])^6,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^6);
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) )^5.
a(n) ~ 15 * 2^(7*n+9) / (Pi^3 * 7^(7/2) * n^6). - Vaclav Kotesovec, Mar 26 2025
Showing 1-2 of 2 results.