A382446 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^6.
1, 1, 4, 257, 4286, 258952, 11816512, 632854273, 43732565914, 2637804065366, 207379028199080, 14568483339859880, 1205457271871693920, 95108827011788280160, 8187664948710535579904, 698818327346476962092801, 62477582066507173352034866, 5627626080883126186936773514
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
Programs
-
Magma
[&+[Binomial(n, k)* (Binomial(n, k) - Binomial (n, k-1))^6: k in [0..n]]: n in [0..21]]; // Vincenzo Librandi, Mar 30 2025
-
Mathematica
Table[Sum[Binomial[n,k]*(Binomial[n,k]-Binomial[n,k-1])^6,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 30 2025 *)
-
PARI
a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^6);
Formula
a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) )^5.
a(n) ~ 15 * 2^(7*n+9) / (Pi^3 * 7^(7/2) * n^6). - Vaclav Kotesovec, Mar 26 2025